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1.1 Introduction

The science of uniquely identifying a person based on his or her physiological
or behavioral characteristics is termed biometrics. Physiological characteris-
tics include face, iris, fingerprint, and DNA, whereas behavioral modalities
include handwriting, gait, and keystroke dynamics. Jain et al. [1] lists seven
factors that are essential for any trait (formally termed modality) to be used
for biometric authentication. These factors are: universality, uniqueness, per-
manence, measurability, performance, acceptability, and circumvention.

An automated biometric system aims to either correctly predict the iden-
tity of the instance of a modality or verify whether the given sample is the same
as the existing sample stored in the database. Figure 1.1 presents a traditional
pipeline of a biometric authentication system. Input data corresponds to the

1



2 Deep Learning in Biometrics

Segmentation
or Detection

Feature 
Extraction ClassificationInput Data Preprocessing

FIGURE 1.1
Illustrating the general biometrics authentication pipeline, which consists of
five stages.

raw data obtained directly from the sensor(s). Segmentation, or detection,
refers to the process of extracting the region of interest from the given input.
Once the required region of interest has been extracted, it is preprocessed to
remove the noise, enhance the image, and normalize the data for subsequent
ease of processing. After segmentation and preprocessing, the next step in
the pipeline is feature extraction. Feature extraction refers to the process of
extracting unique and discriminatory information from the given data. These
features are then used for performing classification. Classification refers to the
process of creating a model, which given a seen/unseen input feature vector
is able to provide its correct label. For example, in case of a face recogni-
tion pipeline, the aim is to identify the individual in the given input sample.
Here, the input data consists of images captured from the camera, containing
at least one face image along with background or other objects. Segmenta-
tion, or detection, corresponds to detecting the face in the given input image.
Several techniques can be applied for this step [2,3]; the most common being
the Viola Jones face detector [4]. Once the faces are detected, they are nor-
malized with respect to their geometry and intensity. For feature extrac-
tion, hand-crafted features such as Gabor filterbank [5], histogram of oriented
gradients [6], and local binary patterns [7] and more recently, representation
learning approaches have been used. The extracted features are then provided
to a classifier such as a support vector machine [8] or random decision forest [9]
for classification.

Automated biometric authentication systems have been used for several
real-world applications, ranging from fingerprint sensors on mobile phones to
border control applications at airports. One of the large-scale applications of
automated biometric authentication is the ongoing project of Unique Identi-
fication Authority of India, pronounced “Aadhaar.” Initiated by the Indian
Government,∗ the project aims to provide a unique identification number for
each resident of India and capture his or her biometric modalities—face, finger-
print, and irises. This is done in an attempt to facilitate digital authentication
anytime, anywhere, using the collected biometric data. Currently, the project
has enrolled more than 1.1 billion individuals. Such large-scale projects often
result in data having large intraclass variations, low interclass variations, and
unconstrained environments.

∗https://uidai.gov.in/

https://uidai.gov.in
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(a)

(b)

FIGURE 1.2
Sample images showcasing the large intraclass and low interclass variations
that can be observed for the problem of face recognition. All images are
taken from the Internet: (a) Images belonging to the same subject depicting
high intraclass variations and (b) Images belonging to the different subjects
showing low interclass variations. (Top, from left to right: https://tinyurl.
com/y7hbvwsy, https://tinyurl.com/ydx3mvbf, https://tinyurl.com/y9uryu,
https://tinyurl.com/y8lrnvrm; bottom from left to right, https://tinyurl.com/
ybgvst84, https://tinyurl.com/y8762gl3, https://tinyurl.com/y956vrb6.)

Figure 1.2 presents sample face images that illustrate the low interclass
and high intraclass variations that can be observed in face recognition. In
an attempt to model the challenges of real-world applications, several large-
scale data sets, such as MegaFace [10], CelebA [11], and CMU Multi-PIE [12]
have been prepared. The availability of large data sets and sophisticated tech-
nologies (both hardware and algorithms) provide researchers the resources to
model the variations observed in the data. These variations can be modeled
in either of the four stages shown in Figure 1.1. Each of the four stages in
the biometrics pipeline can also be viewed as separate machine learning tasks,
which involve learning of the optimal parameters to enhance the final authen-
tication performance. For instance, in the segmentation stage, each pixel can
be classified into modality (foreground) or background [13,14]. Similarly, at
the time of preprocessing, based on prior knowledge, different techniques can
be applied depending on the type or quality of input [15]. Moreover, because
of the progress in machine learning research, feature extraction is now viewed
as a learning task.

Traditionally, research in feature extraction focused largely on hand-
crafted features such as Gabor and Haralick features [5,16], histogram of
oriented gradients [6], and local binary patterns [7]. Many such hand-crafted

https://tinyurl.com/y7hbvwsy
https://tinyurl.com/ydx3mvbf
https://tinyurl.com/y9uryu
https://tinyurl.com/y8lrnvrm
https://tinyurl.com/ybgvst84
https://tinyurl.com/y8762gl3
https://tinyurl.com/y956vrb6
https://tinyurl.com/y7hbvwsy
https://tinyurl.com/ybgvst84
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x1

x2

xn−1

wixi Output

w1
w2

wn−1

wn Sum

Σ
Step Function

i = 1

n

xn

FIGURE 1.3
Pictorial representation of a perceptron.

features encode the pixel variations in the images to generate robust fea-
ture vectors for performing classification. Building on these, more complex
hand-crafted features are also proposed that encode rotation and scale vari-
ations in the feature vectors as well [17,18]. With the availability of training
data, researchers have started focusing on learning-based techniques, result-
ing in several representation learning-based algorithms. Moreover, because
the premise is to train the machines for tasks performed with utmost ease
by humans, it seemed fitting to understand and imitate the functioning of
the human brain. This led researchers to reproduce similar structures to
automate complex tasks, which gave rise to the domain of deep learning.
Research in deep learning began with the single unit of a perceptron [19],
which was able to mimic the behavior of a single brain neuron. Figure 1.3
illustrates a perceptron for an input vector of dimensionality n × 1, that
is, [x1, x2, . . . , xn]. The perceptron generates an output based on the input
as follows:

output =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if

n∑

i=1

wixi > 0

0, if

n∑

i=1

wixi ≤ 0

(1.1)

where wi corresponds to the weight for the ith element of the input. The be-
havior of the perceptron is said to be analogous to that of a neuron, since,
depending on a fixed threshold, the output would become 1 or 0. Thus, be-
having like a neuron receiving electrical signal (input), and using the synapse
(weight) to fire its output. Treating the perceptron as a building block, several
complex architectures have further been proposed. Over the past few years,
the domain of deep learning has seen steep development. It is being used
to address a multitude of problems with applications in biometrics, object
recognition, speech, and natural language processing.

Deep learning architectures can broadly be categorized into three
paradigms: restricted Boltzmann machines (RBMs), autoencoders, and con-
volutional neural networks (CNNs). Restricted Boltzmann machines and
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autoencoders are traditionally unsupervised models used for learning meaning-
ful representations of the given data. CNNs, on the other hand, are tradition-
ally supervised models with the objective of improving the overall classification
performance. Each of these architectures are discussed in detail in following
sections.

1.2 Restricted Boltzmann Machine

A restricted Boltzmann machine (RBM) is an unsupervised generative arti-
ficial neural network model used for learning representations of a given set
of input. It was first introduced in 1986 with the name Harmonium [20]
and was built on the traditional Boltzmann machine. As can be seen from
Figure 1.4a, a Boltzmann machine is a fully connected graphical model con-
sisting of hidden and visible layers, such that each node (unit) is connected to
all other nodes of the graph. An RBM is created by restricting the within-layer
connections of the hidden and visible layers (Figure 1.4b). The visible layer
corresponds to the known input data, and the hidden layer corresponds to the
representation learned by the model. For a given binary vector of visible units
(v) and a binary vector of hidden units (h), the energy function of the model
is written as:

E(v, h) = −
n∑

i=1

aivi −
r∑

j=1

bjhj −
n∑

i=1

r∑

j=1

vihjwi,j (1.2)

h1 h2 h3 h4

v1 v2 v3

h1 h2 h3 h4

v1 v2 v3

(a) (b)

FIGURE 1.4
Pictorial representation of a Boltzmann machine and an RBM having a single
visible layer of three nodes (v1−v3) and a single hidden layer of four nodes
(h1−h4). The RBM does not have within-layer connections for the hidden and
visible layers: (a) Boltzmann Machine and (b) RBM.
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where:
n and r correspond to the number of visible and hidden units in the model,

and v ∈ {0, 1}n, h ∈ {0, 1}r
a and b are the visible and hidden bias vectors, respectively

wi,j is the weight connection between the visible unit vi and the hidden
unit hj

Therefore, the energy function consists of three terms, one for the visible
(input) data, one for the hidden representation, and the third for model-
ing the relationship between the hidden and visible vectors. In matrix form,
Equation 1.2 can be written as:

E(v, h) = −aT v − bTh− vTWh (1.3)

Being a probabilistic model, the network defines the probability distribution
over the visible and hidden vectors as follows:

P (v, h) =
1

Z
e−E(v,h) (1.4)

where, Z is a normalization constant (termed partition function), defined as
the sum of the energy function over all combinations (Z =

∑
v,h e

−E(v,h)).
Building on Equation 1.4, the probability that a network assigns to a particular
visible vector can be calculated as follows:

P (v) =
1

Z

∑

h

e−E(v,h) (1.5)

Thus, the loss function of an RBM can be expressed as the negative log-
likelihood of the probability that a network assigns to the visible vector and
written as:

�RBM = −
n∑

i=1

log(P (vi)) (1.6)

For a real-valued input vector, the data can be modeled as Gaussian variables,
resulting in the modification of the energy function for the RBM as follows:

E(v, h) = −
n∑

i=1

(vi − bi)
2

2σ2
i

−
r∑

j=1

bjhj −
n∑

i=1

r∑

j=1

vi
σi

hjwi,j (1.7)

Using RBMs as the building blocks, deep architectures of deep belief network
(DBN) [21] and deep Boltzmann machine (DBM) [22] have also been proposed
in the literature. Both the models are created by stacking RBMs such that
the input to the nth RBM is the learned representation of the (n−1)th RBM.
A DBN has undirected connections between its first two layers (resulting in
an RBM) and directed connections between its remaining layers (resulting in
a sigmoid belief network). On the other hand, a DBM constitutes of stacked
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RBMs with only undirected connections between the layers. RBMs have been
used for addressing several challenging problems such as document modeling
[23,24], collaborative filtering [25], audio conversion, and person identification
[26–28]. Moreover, building on the unsupervised model of RBM, researchers
have also proposed supervised architectures to learn discriminative feature
representations [29,30].

1.2.1 Incorporating supervision in RBMs

In 2008, Larochelle and Bengio [29] presented the discriminative restricted
Boltzmann machine (DRBM), which incorporates supervision in the tradition-
ally unsupervised feature extraction model. DRBM models the joint distribu-
tion of the input data and their corresponding target classes, thereby resulting
in a model capable of performing classification. Modifying Equation 1.6, the
loss function of DRBM can be expressed as follows:

�DRBM = −
n∑

i=1

log(P (vi, yi)) (1.8)

where, yi corresponds to the target class for input sample, vi. Modeling
Equation 1.8 results in a complete model capable of performing feature ex-
traction as well as classification for a given input. This is followed by several
models incorporating supervision in the probabilistic model to learn discrim-
inative features [31,32].

In 2016, inspired by the discriminative properties of DRBM, Sankaran
et al. presented Class Sparsity Signature-based RBM (cssRBM) [30]. The pro-
posed cssRBM is a semi-supervised model, built on DRBM by incorporating
a l2,1-norm–based regularizer on the hidden variables. This is done to ensure
that samples belonging to a particular class have a similar sparsity signature,
thereby reducing the within-class variations. For a k-class problem, the loss
function for cssRBM is formulated as follows:

�cssRBM = �DRBM + λ

k∑

i=1

‖Hi‖2,1 (1.9)

where Hi corresponds to a matrix containing representations of samples be-
longing to the ith class, where the jth row corresponds to the hidden layer
representation of the jth training sample of the given class. The model is used
to learn discriminative feature representations, which are then provided to a
classifier for performing classification.

1.2.2 Other advances in RBMs

Over the past several years, progress has also been made with RBMs in
the form of incorporating unsupervised regularizers and modifying them
for different applications. In 2008, Lee et al. presented sparse DBNs [33],
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mimicking certain properties of the human brain’s visual area, V2. A regular-
ization term is added to the loss function of an RBM to introduce sparsity in
the learned representations. Similar to the performance observed with stacked
autoencoders, the first layer was seen to learn edge filters (like the Gabor fil-
ters), and the second layer encoded correlations of the first-layer responses
in the data, along with learning corners and junctions. Following this, a con-
volutional deep belief network (CDBN) was proposed by Lee et al. [34] for
addressing several visual-recognition tasks. The model incorporated a novel
probabilistic max-pooling technique for learning hierarchical features from un-
labeled data. CDBN is built using the proposed convolutional RBMs, which
incorporate convolution in the feature learning process of traditional RBMs.
Probabilistic max-pooling is used at the time of stacking convolutional RBMs
to create CDBNs for learning hierarchical representations. To eliminate trivial
solutions, sparsity has also been enforced on the hidden representations. In-
spired by the observation that both coarse and fine details of images may pro-
vide discriminative information for image classification, Tang and Mohamad
proposed multiresolution DBNs [35]. The model used multiple independent
RBMs trained on different levels of the Laplacian pyramid of an image and
combined the learned representations to create the input to a final RBM. This
entire model is known as multiresolution DBN, and the objective is to extract
meaningful representations from different resolutions of the given input image.
Coarse and fine details of the input are used for feature extraction, thereby
enabling the proposed model to encode multiple variations. Further, in 2014,
in an attempt to model the intermodality variations for a multimodal classifi-
cation task, Srivastava and Salakhutdinov proposed the multimodal DBM [36].
The model aimed to learn a common (joint) representation for samples belong-
ing to two different modalities such that the learned feature is representative of
both the samples. The model also ensures that it is able to generate a common
representation given only a sample from a single modality. In the proposed
model, two DBMs are trained for two modalities, followed by a DBM trained
on the combined learned representations from the two previous DBMs. The
learned representation from the third DBM corresponds to the joint represen-
tation of the two modalities. Recently, Huang et al. proposed an RBM-based
model for unconstrained multimodal multilablel learning [37] termed a mul-
tilabel conditional RBM. It aims to learn a joint feature representation over
multiple modalities and predict multiple labels.

1.2.3 RBMs for biometrics

RBMs have also been used to address several bometrics-related applications,
including kinship verification and face and iris recognition. In 2009, Lee et al.
built on the CDBN [34] for addressing the task of audio classification [38].
They modified the model to work with single-dimensional input data and
thus learn hierarchical representations using the probabilistic max-pooling
technique. Another hybrid model of RBM and CNNs, termed ConvNet-RBM,
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has been proposed for performing face verification in the wild [28]. Multiple
deep CNNs are trained using pairs of face images with the aim of extracting
visual relational features. Each ConvNet is trained on a separate patch-pair
of geometrically normalized face images. The high-level features learned from
the deep ConvNets are then provided as input to a discriminative RBM for
learning the joint distribution of the samples, labels, and the hidden rep-
resentations. The entire model is then used for performing classification of
face images in the wild. Taking inspiration from the multimodal DBM model
[36], Alam et al. presented a joint DBM for the task of person identification
using mobile data [26]. A joint model is built on two unimodal DBMs and
trained using a novel three-step algorithm. Learned representations from the
unimodal DBMs are provided as input to a common RBM, which then learns
the shared representation over two different modalities. In 2017, RBMs have
also been used to perform kinship verification on face images [39]. A hierar-
chical kinship verification via representation learning framework is presented
by Kohli et al. [39] which uses the proposed filtered contractive (fc) DBN.
fc-RBMs are used as the building blocks of the architecture, wherein a con-
tractive term has been added to the loss function of the traditional RBM, to
learn representations robust to the local variations in the images. Moreover,
a filtering approach has also been incorporated in the RBM, such that the
model uses the structural properties of face images and extracts meaningful
facial features for representation learning. Multiple independent fc-DBNs are
trained for local and global facial features; the learned representations are
then combined and provided as input to a final fc-DBN for feature learning.

It can thus be observed that RBMs have widely been used for addressing
the task of biometric authentication. As mentioned, models such as ConvNet-
RBM [28], joint DBM [26], and fc-DBN [39] have shown to perform well with
face images. Teh and Hinton proposed a rate-coded RBM, which is a neu-
rally inspired generative model for performing face recognition [40]. The pro-
posed algorithm creates generative models for pairs of face images belonging
to the same individual, which are then used for identifying a given test image.
Goswami et al. [41] also proposed a deep learning architecture, which is a com-
bination of a DBM and a stacked denoising autoencoder for performing face
verification in videos. One of the key contributions of the work is the inclu-
sion of sparsity and low-rank regularization in the formulation of a traditional
DBM. Other than face recognition, RBMs have also been explored for other
modalities, such as recognition of fingerprint and periocular images [30,42].

1.3 Autoencoder

Autoencoders (AEs) are unsupervised neural network models aimed at learn-
ing meaningful representations of the given data [43]. An AE model consists of
two components: the encoder and the decoder. The encoder learns a feature
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Representation (h)

Input (x) Reconstructed input (x′)

FIGURE 1.5
Diagrammatic representation of a single-layer AE having input as x, learned
representation as h, and the reconstructed sample as x′.

representation of the given input sample, and the decoder reconstructs the
input from the learned feature vector. The model aims to reduce the error
between the input and the reconstructed sample to learn representative fea-
tures of the input data. Figure 1.5 presents a diagrammatic representation
of a single-layer AE. For a given input vector x, a single-layer AE can be
formulated as follows:

argmin
We,Wd

‖x−Wdφ(Wex)‖22 (1.10)

where:

We and Wd are the encoding and decoding weights respectively

φ is the activation function

Nonlinear functions such as sigmoid or tanh are often used as the activation
functions. If no activation function is used at the encoding layers, the model
is termed a linear AE. Equation 1.10 aims to learn a hidden representation
(h = φ(Wex)) for the given input x, such that the error between the original
sample and the reconstructed sample (Wdh) is minimized. To create deeper
models, stacked AEs are used. Stacked AEs contain multiple AEs, such that
the learned representation of the first AE is provided as input to the second
one. A stacked AE with l layers is formulated as follows:

argmin
We,Wd

‖x− g ◦ f(x)‖22 (1.11)
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weights of the ith layer. Since deeper models require learning large number
of parameters, Bengio et al. [44] and Hinton and Salakhutdinov [45] proposed
greedy layer-by-layer optimization of deep models. This approach aims at
learning the weight parameters of one layer at a time, while keeping the re-
maining fixed, and thus reducing the number of parameters to be optimized
simultaneously. AEs have been used to address a variety of tasks such as
face verification, object classification, magnetic-resonance image reconstruc-
tion, and audio processing. There also exists several architectural variations of
AEs, where authors have incorporated different forms of regularizations and
even incorporated supervision to learn robust or task-specific features. The
following subsections provide details of such models.

1.3.1 Incorporating supervision in AEs

Researchers have proposed incorporating supervision in the unsupervised fea-
ture learning models of AEs in order to learn discriminative features. This is
done either by directly using the class label at the time of feature learning
or incorporating the class information (same or different) while training the
model. Gao et al. [46] proposed supervised AEs for performing single-sample
recognition. The model aims to map two different images of the same person
on to the same representation to reduce intraclass variations during feature
encoding. Equation 1.12 presents the loss function of the proposed model,
where xi corresponds to the gallery image, and xni refers to the probe image
of the training set. The model aims to learn a representation for the probe
image, xni, such that when it is reconstructed via the proposed model, it
generates the gallery image xi. The second term corresponds to a similarity
preserving term, which ensures that samples of the same class have a similar
representation. The loss function of the proposed supervised AE is formulated
as follows:

argmin
We,Wd

1

N

∑

i

(

‖xi − g ◦ f(xni)‖22 + λ ‖f(xi)− f(xni)‖22
)

+α

(

KL(ρx‖ρo) +KL(ρxn
‖ρo)

)

where ρx =
1

N

∑

i

1

2

(
f(xi) + 1

)
, ρxni

=
1

N

∑

i

1

2

(
f(xni) + 1

)

(1.12)

The first term corresponds to the reconstruction error, the second is the
similarity-preserving term, and the remaining two correspond to the Kullback–
Leibler divergence [47]. Following this, Zheng et al. [48] proposed the con-
trastive AE (CsAE), which aimed at reducing the intraclass variations. The
architecture consists of two AEs, which learn representations of an input pair
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of images. For a given pair of images belonging to the same class, the architec-
ture minimizes the difference between the learned representation at the final
layer. For a k-layered architecture, the loss function of the CsAE is modeled
as follows:

argmin
We,Wd

λ(‖x1 − g1 ◦ f1(x1)‖22 + ‖x2 − g2 ◦ f2(x2)‖22)

+(1− λ)
∥
∥Ok

1 (x1)−Ok
2 (x2)

∥
∥2
2

(1.13)

where:
x1 and x2 refer to two input samples of the same class

fj(x) and gj(x) correspond to the encoding and decoding functions of the
jth AE

For each AE, f(x)=φ(Wk
eφ(W

k−1
e . . .φ(W1

e(x)))) and g(x)=W1
d(W

2
d . . .

Wk
d(x)), where Wi

e and Wi
d refer to the encoding and decoding weights of

the ith layer for both the AEs, and Ok
j (x) is the output of the k

th layer of the

jth AE.
Recently, Zhuang et al. [49] proposed a transfer learning-based super-

vised AE. They modified the AE model to incorporate a layer based on soft-
max regression for performing classification on the learned-feature vectors.
Although the encoding–decoding layers ensure that features are learned such
that the reconstruction error is minimized, the label-encoding layer aims to
incorporate discrimination in the learned features based on their classification
performance. In 2017, Majumdar et al. [50] presented a class sparsity–based
supervised encoding algorithm for the task of face verification. Class infor-
mation is used to modify the loss function of an unsupervised AE, by incor-
porating a l2,1-norm–based regularizer. For input samples X, the proposed
architecture is formulated as:

argmin
We,Wd

‖X− g ◦ f(X)‖22 + λ ‖WeXc‖2,1 (1.14)

where, Xc refers to the samples belonging to class c. The regularization pa-
rameter ensures that samples belonging to a particular class have a simi-
lar sparsity signature during feature encoding. This helps in reducing the
intraclass variations, thereby promoting the utility of the learned features for
classification.

1.3.2 Other variations of AEs

Other than incorporating supervision, researchers have also focused on mod-
ifying the architecture of the unsupervised AE to learn robust features from
the given data. In 2010, Vincent et al. introduced the stacked denoising AE,
which learns robust representations of the input data, even in the presence of
noise [51]. During feature learning, the authors introduced noise in the input
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data with the aim of reconstructing the original, clean sample. That is, a noisy
sample is provided as input to the model, and the reconstruction error is min-
imized with respect to the clean, original sample. For a given input sample x,
the loss function of stacked denoising AE can be formulated as follows:

argmin
We,Wd

‖x− g ◦ f(xn)‖22 (1.15)

where xn is the noisy input sample. Experimental evaluation and analysis
suggested the model to be learning Grabor-like features, thereby encoding edge
information in the feature-learning process. To extract robust features from
noisy data, Rifai et al. [52] proposed the contractive AE. The loss function
of the model consists of the Frobenius norm of the Jacobian matrix of the
encoder activations with respect to the input. This additional term helps in
learning robust features, irrespective of noisy input or minute corruptions in
the input data. This is followed by higher order contractive AEs [53], where
an additional regularization term consisting of the Hessian of the output with
respect to the encoder, is added in the loss function. Experimental evaluation
and analysis depicts that the model performs well with noisy input, and the
learned weight matrices can be used for efficient initialization of deep models.

AEs have also been used for addressing tasks involving multimodal recog-
nition [54,55]. In 2011, Ngiam et al. [55] proposed using AEs for learning a
shared representation for a given video and audio input. A bimodal deep AE
was proposed that learned a shared representation from a pair of audio and
video data, such that the input can be reconstructed back from the shared
representation. In 2015, Hong et al. [54] proposed using a multimodal deep
AE for performing human-pose recovery. The architecture consists of two AEs
and a neural network. The AEs are trained independently on two-dimensional
(2D) images and three-dimensional (3D) poses. This is followed by a neural
network that learns nonlinear mapping between the hidden representations of
both AEs. Once the entire architecture is learned, the model is able to recover
the pose from a given input image.

AEs have been explored for performing biometric authentication for differ-
ent modalities. As mentioned previously, several models have been built on the
traditional unsupervised AE model for performing the task of face recognition
[46,48,50], as well as for performing face segmentation and alignment [56–58].
Recently, Singh et al. [59] proposed a class representative AE for performing
gender classification in low resolution, multispectral face images. The proposed
model uses the mean feature vectors of the two classes for learning discrimi-
native feature representations. Dehghan et al. [60] proposed a gated AE-based
architecture for determining parent–offspring resemblance from face images.
The proposed architecture uses a pair of face images as input and learns
patch-wise features for the given pair, which is followed by a neural network
for classification. AEs have also been used for analyzing latent fingerprints and
periocular images [61–63]. Raghavendra and Busch proposed deeply coupled
AEs for performing periocular verification for smartphones [42]. The proposed
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architecture uses a combination of maximum-response filters and coupled AEs,
along with neural networks for classification. Overall, AEs have been used
for different tasks related to biometric authentication, such as segmentation,
feature extraction, and quality assessment in supervised and unsupervised
manners.

1.4 Convolutional Neural Networks

A convolutional neural network (CNN) is a supervised deep learning model
used for performing classification. The CNN architecture is inspired from the
arrangement of neurons in the visual cortex of animals [64]. CNNs are used to
learn an efficient feature representation for a given set of images by performing
spatial convolution on a two-dimensional input followed by pooling to ensure
translational invariance. During each forward pass of a given CNN, the model
learns filters or kernels, which are used for performing convolution. Deep CNNs
are hierarchical in nature, that is, they learn low-level features in the shallow
layers, such as edges, which are combined to learn higher levels of abstraction
in the deeper layers of the network.

1.4.1 Architecture of a traditional CNNs

A CNN is made up of several different types of layers, each performing a spe-
cific function. A traditional CNN is made up of convolution and pooling layers
alternatively, followed by a fully connected layer to perform classification. An
explanation of each layer follows.

Convolutional layer : As the name suggests, this is the building block of a CNN
and is of utmost importance. Several filters are used to perform convolutions
on the input vector by sliding it over the image. These filters are learned
as part of the training process. The feature vector obtained after convolving
an image with a filter is referred to as an activation map or filter map. The
number of activation maps obtained is equal to the number of filters learned
over the input. This operation encodes the fine details as well as the spatial
information of the input in the feature maps. Given an input image of size
n× n× d, the convolutional layer of the model learns m kernels of size k× k,
with a stride of size s. Thus, the output of the given layer is of the following
dimension:

Output Size = (n−k)/s + 1 (1.16)

Rectified linear units layer (ReLU): This is used to introduce nonlinearity in
the network to learn more discriminative features. It is usually applied after
each convolutional layer. In the past, activation functions such as sigmoid and
tanh have been used to introduce nonlinearity, however it has been observed
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that ReLU is faster and reduces the training time significantly [65]. It also
eliminates the vanishing gradient problem by converting all negative values
to 0. The function applied in this layer is given as follows:

f(x) = max(0, x) (1.17)

Pooling layer : Pooling layers or downsampling layers are used for dimension-
ality reduction of the feature maps after the convolution and ReLU layers.
Generally, a filter size is chosen and an operation such as max or average is
applied on the input space, which results in a single output for the given sub-
region. For example, if the operation defined is max-pooling for a filter size of
2× 2, the max of all values in the subregion is the output of the filter. This is
done for the entire feature map by sliding the filter over it. The aim of this op-
eration is to encode the most representative information, while preserving the
relative spatial details. This step not only enables dimensionality reduction,
but also prevents over-fitting.

Fully connected layer : After the convolutional and pooling layers, fully con-
nected layers are attached in the network. These layers function like a tradi-
tional neural network, where each element is considered an independent node
of the neural network. The output dimension of the final layer is equal to the
number of classes, and each value of the output vector is the probability value
associated with a class. This type of layer is used to encode supervision in
the feature-learning process of the CNNs because the last layer is used for
classification.

In CNNs, there is no fixed order in which its constituent layers are stacked.
However, typically a convolutional layer is followed by a pooling layer form-
ing a convolutional-pooling block. This block is repeated, depending on the
desired size of the network. These layers are followed by fully connected lay-
ers and the final layer is responsible for classification. ReLU is often attached
after each convolutional and fully connected layer to incorporate nonlinearity
in the feature-learning process. Figure 1.6 is an example of a traditional CNN
model consisting of five layers: two convolutional and two pooling, stacked
alternatively, and the final layer being the fully connected layer. Owing to the
flexibility in the architecture, researchers have developed different models for
performing feature extraction and classification tasks. Some recent develop-
ments involving CNNs are discussed in the next subsections.

1.4.2 Existing architectures of CNNs

Inspired by the work of Fukushima [66] on artificial neural networks,
LeCun et al. [67] proposed the first model of a CNN in 1990 for the ap-
plication of hand-written zip code recognition. The back-propagation tech-
nique was used to train the existing neural networks. The proposed model
consists of four hidden layers, the first and third layers being shared-weight
feature-extraction layers and the second and fourth are subsampling layers.
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FIGURE 1.6
Diagrammatic representation of a CNN having input as 24 × 24. The first
convolution layer learns four filters of 5× 5, resulting in four feature maps of
size 20 × 20. This is followed by pooling with a filter size of 2 × 2. Pooling
layer is again followed by convolution and pooling layers. The final layer is a
fully connected layer, the output of which is used to perform classification.

Convolution is used to perform feature extraction. This architecture was fur-
ther refined and several frameworks were proposed between 1990 and 2000
[68,69]. One such model was Le-Net5 [69], composed of seven layers. Similar
to the first model, the first and third layer are convolutional layers, and the
second and fourth layers correspond to the pooling layers. However, in this
model, these are followed by three fully connected layers where the output of
the final layer provides the output label. Since then, CNNs have undergone
major evolution and are being used to achieve state-of-the-art results on sev-
eral applications such as image classification [70,71], face recognition [72,73],
detection [74,75], natural language processing [76], and playing Go [77].

Krizhevsky et al. [65] proposed AlexNet to perform image classification,
as part of the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)
2012. The proposed architecture comprises eight layers, out of which the first
five are the convolutional layers with overlapping max-pooling and the follow-
ing three are fully connected layers. The dimension of each fully connected
layer is 4096. Softmax is used to predict the class label of the learned rep-
resentation. AlexNet used 15 million images belonging to 22,000 categories
for training, using two GPUs. The model takes RGB images of dimension
224× 224 as input, on which 96 kernels are learned in the first layer, followed
by 256 kernels in the second convolutional layer. No pooling or normalization
is performed between the remaining convolutional layers. The third and fourth
layers consisted of learning 384 kernels, and the final layer consisted of learn-
ing 256 kernels. It can be observed that the first layer alone required learning
105,705,600 parameters, making it one of the largest networks of that time.
ReLU has also been used to introduce nonlinearity between layers because it
significantly helps in reducing the training time of the model. Data augmenta-
tion is performed on the training images, along with utilization of dropout for
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preventing over-fitting. The entire model was learned using stochastic gradient
descent approach. The authors report a top-5 error rate of 15.3%, displaying
an improvement of at least 10% as compared to the next-best result reported
in the ImageNet challenge, making CNNs popular in the computer vision
community.

In the following year, Zeiler et al. [78] proposed a model built over AlexNet
and termed it ZFNet. The model used 1.3 million images for training,
as opposed to the 15 million used by AlexNet. However, ZFNet achieved
state-of-the-art performance on the ImageNet challenge with an error rate
of 11.80%, displaying an improvement of about 5% as compared to AlexNet.
They achieved this by reducing the filter size of the first convolutional layer
to 7 × 7, while keeping the rest of the architecture consistent with AlexNet.
The authors also studied the visualization of weights and layers in depth by
building a model to reverse the steps of a traditional CNN, which is termed
a DeconvNet. They established that CNNs learn features in a hierarchical
manner. The initial layers learn low-level features such as edge and color,
and as one goes deeper, a higher level of abstraction is learned. DeconvNet
is a great tool for not only visualizing the inner workings of a CNN, but
also for understanding and improving the architecture based on the learned
features.

Lin et al. [79] proposed Network-in-Network, a method to learn fea-
ture maps using a nonlinear operation, instead of the traditional convolution
operation. The authors suggested that using the convolution filter resulted
in a linear model capable of learning low-level abstractions. In contrast,
adding nonlinearity at this stage results in learning robust features. There-
fore, the proposed model uses nonlinearity by learning the feature map using
a micronetwork structure that consists of multilayers perceptrons resulting
in multiple fully connected layers. The features are learned by sliding the
network, similar to traditional CNNs. This module of learning the features
is termed mlpconv. Stacking multiple such modules resulted in the modified
network, termed a network-in-network. Alternatively, rather than a fully con-
nected network, global average pooling is performed, followed by a softmax
layer for performing classification. Mlpconv layers use nonlinearity in the net-
work to learn discriminative features, and global average pooling is used as a
regularizer to prevent over-fitting of the model.

Simonyan et al. [71] reestablished the fact that CNNs need to be deep
to learn hierarchical features. The authors proposed VGGNet, a 19-layer
CNN, in which very small filters of size 3 × 3 are learned, as compared to
AlexNet’s 11×11. The authors observed that learning smaller filters for deeper
architectures requires fewer parameters, rather than learning larger filters for
fewer layers for the same data. This resulted in lesser training time and also
increased the nonlinearity introduced at each layer, learning more discrim-
inative features. In this case, learning a stack of three convolutional layers
(without pooling), becomes equivalent to learning a receptive field of 7 × 7.
The convolutional layers are followed by three fully connected layers, in which
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the last one performs classification. The proposed model, VGGNet reports an
error rate of 7.3% on the ImageNet database, being at least 4% better than
ZFNet, the best reported results in 2013.

In 2014, Taigman et al. [73] proposed a deep neural network–based system,
DeepFace to perform face verification. A Siamese network is built, where each
unit of the Siamese network consists of a CNN module. Each CNN module
consists of a convolution layer with 32 filters resulting in 32 feature maps,
which are provided as input to the pooling layer. Max-pooling is applied over
3 × 3 neighborhoods. This is followed by another convolutional layer that
learns 16 filters. This is followed by three locally connected layers, where at
each location a different filter is learned for convolution. The output of these
is finally given as input to a fully connected layer. ReLU activation is applied
after each convolutional layer, locally connected and fully connected layer. The
output of the Siamese network is then classified using weighted chi-squared
distance. The aim of the model is to minimize the distance between pairs
of face images belonging to the same class while maximizing the interclass
distance. In the same year, Szegedy et al. [80] proposed GoogLeNet, a deep
CNN model comprising of 27 layers. However, unlike the traditional CNN
models where convolution and pooling layers are stacked one after the other,
it performs both the operations parallel at the same level. Based on this idea,
the authors introduced the concept of Inception in CNNs. The proposed model
consists of several inception modules stacked together. Each inception module
consists of a 1 × 1 convolution filter, 1 × 1 followed by 3 × 3 convolution
filters, 1×1 followed by 5×5 convolution filters, and pooling being performed
parallel on the input for the given layer. The output of all these operations
is concatenated and used as input for the next layer. In the proposed model,
nine such inception modules are stacked one after the other. This architecture
enables the use of a small-, medium-, and large-sized filter convolution and
pooling at each layer. This leads to learning information about very fine details
as well as the spatial details, while pooling reduces the size and prevents
over-fitting. The model does not consist of any fully connected layer, instead
only softmax is added at the end. Despite being deeper and a more complex
architecture, the proposed model learned at least 10 times fewer parameters
as compared to AlexNet. This illustrates the computational efficiency of the
proposed concept of Inception in CNNs. GoogLeNet used 1.2 million images of
1000 classes from the ImageNet challenge database for its training. It reported
state-of-the-art results at the time, with a top-5 error rate of about 6.7%,
winning ImageNet Large-Scale Visual Recognition Challenge 2014.

Continuing with the revolution of depth in deep learning architectures,
He et al. [70] proposed a deep CNN-based model, ResNet. It consists of 152
layers and reports state-of-the-art results on the ImageNet database with a
top-5 error rate of 3.6%. The authors proposed the concept of a residual block.
In traditional CNN models, the output obtained from the convolution-ReLU
layers is learned. However, in a residual block, the difference between the input
and the learned representation is learned. This is based on the hypothesis that



Deep Learning: Fundamentals and Beyond 19

it is easier to learn a residual term as opposed to a completely new represen-
tation for the input. The proposed architecture also prevents the problem of
vanishing gradient that arises as the architectures go deeper. The filter sizes
are small throughout the network in the convolution layers, followed by a fully
connected layer that is used to perform classification.

Schroff et al. [72] developed a CNN-based face-recognition system,
FaceNet. In the model, face images are mapped to a Euclidean space such
that the distance between feature vectors of same identity are minimized and
for different identities is maximized. The model consists of the input layer,
which is sent to a deep CNN, followed by a triplet loss [81] on the normalized
output. The model is trained using triplets of two images belonging to the
same identity (genuine), whereas the third one belongs to a different identity
(imposter). One of the same identity images is termed the pivot. The aim
of the model is to make the pivot closer to the genuine image than to the
imposter.

Girshick et al. [74] proposed region-based CNNs for object detection, pop-
ularly known as R-CNNs. The proposed model is used for object detection
and reported an improvement of more than 30% as compared to the existing
methods, achieving a mean average precision of 53.3% on the Pascal VOC
data set [82]. It predicts the presence of an object in the image and also com-
putes the exact location of the object in the image. The pipeline consists of
two main steps: selecting possible regions and classifying the objects in the
regions. An existing approach of selective search [83] is used to deduce the
possible regions of the image. Irrespective of the dimension of the image, it
is warped into 224 × 224. AlexNet is used for feature extraction from these
region specific images. The features are used as input for a set of support
vector machines, which are trained for classification, to obtain the required
result.

CNN-based models such as DeepFace, FaceNet, and VGG-Face have per-
formed well for the task of face recognition [72,73,84]. Moreover, different
architectures have also been proposed for performing face detection in chal-
lenging environments [85–87]. Farfade et al. [85] proposed Deep Dense Face
Detector for performing face detection on a large range of pose variations,
without requiring landmark annotation. The proposed model is built over
AlexNet [65] and uses a sliding window technique to generate a heat map
where each point corresponds to the probability of it being a face. Research
also been performed on attribute classification of face images and spoofing
detection for iris, face, and fingerprint modalities [88–90]. Levi and Hassner
[88] proposed a CNN architecture consisting of three convolutional layers and
two fully connected layers for performing age and gender classification on
face images. As compared to other existing architectures, the authors used
a relatively smaller architecture because the classification task consisted of
only eight classes for age and of only two classes for gender. Moreover, CNN
models have been explored for the modalities of fingerprint, pupil, and other
soft-biometric traits as well [91–93].
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1.5 Other Deep Learning Architectures

Although there has been substantial research in the mentioned paradigms of
RBM, AE, and CNN, researchers have also focused on other deep learning–
based models for addressing different tasks. Most of these models are built
on the fundamental building block of a neuron; however, their architectures
vary significantly from those mentioned here. For example, recurrent neural
networks (RNNs) are neural networks with loops (as shown in Figure 1.7),
allowing information to remain in the network by introducing the concept of
memory. In traditional neural networks, information learned previously cannot
be used to classify or predict new information at a later stage. The ability of
RNNs to hold on to the information via the additional loops enables the use
of sequential information. These networks can be viewed as multiple neural
networks connected to each other, having the same architecture and the same
parameters with different inputs. RNNs have been used extensively for several
applications such as language modeling, text generation, machine translation,
image generation, and speech recognition [94–97] and have achieved promising
results.

To provide more flexibility to an RNN, Hochreiter and Schmidhuber de-
veloped a special kind of RNN, termed a long short-term memory, popularly
referred to as LSTM [98]. Such networks provide the ability to control whether
the learned information needs to be in the memory for long or short dura-
tions. This is done by incorporating a linear activation function between the
recurring loops. LSTMs usually consist of three different types of gates: input,
forget, and output. Input controls the amount of information flow from the
previous iteration, forget controls the amount of information to be retained
in the memory, and the output gate restricts the information that is used to
compute the value for the next block. LSTMs have provided state-of-the-art
results for various applications and are being used extensively for tasks like
sentiment analysis, speech recognition, and language modeling [99–102].

Input

Network Unit

Learned
Representation

FIGURE 1.7
Diagrammatic representation of a single RNN unit.
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Recently, Goodfellow et al. [103] proposed the generative adversarial net-
work (GAN), which is built using two models being trained simultaneously.
A GAN framework consists of a generative model, which works on the data
distribution of the training data and generates new samples, and a discrim-
inative model, which estimates whether the sample generated from the gen-
erative model actually came from the training data or not. The aim of the
entire framework is to increase the error of the discriminative model, that is,
facilitate generation of samples similar to the training data. Tran et al. [104]
proposed a disentangled representation learning GAN for performing pose in-
variant face recognition. Given one or multiple input faces of varying pose,
the ultimate aim of disentangled representation GAN is to synthesize a face
image at a predefined target pose, along with the learned representations.
Xin et al. [105] also proposed a face frontalization GAN aimed at performing
pose invariant face recognition. The model incorporates a three-dimensional
morphable model into the GAN structure, along with a recognition engine for
optimizing the classification performance.

Apart from traditional models, researchers have also proposed hybrid mod-
els such as Deep Dictionary [106]. Deep Dictionary aims to learn sparse rep-
resentations of data while using the capabilities of deep learning models to
learn hierarchical features. In the proposed model, learned sparse codes are
treated as the learned features from the given layer, which are used as input
to the next layer of dictionary. Such architectures combine the advantages
of representation learning techniques such as dictionaries and deep learning
models into a single model and achieve promising results [107].

1.6 Deep Learning: Path Ahead

Deep learning has achieved state-of-the-art results for several applications;
however, it has a few limitations as well. Most of the models based on
deep learning require large amount of training data, thereby being compu-
tationally intensive. For example, the AlexNet model is trained on 15 million
images and learned 105,705,600 parameters in the first layer alone. There-
fore, the requirement of large amount of training data leads to limited deep
learning based research in problems with less data. For example, in the ap-
plication of face-sketch recognition, even on combining all publicly avail-
able data sets belonging to viewed, forensic, semi-forensic, and composite
sketch data sets, the total number of images is still less than 2000. In par-
ticular, real-world forensic images are further less than 500, and thus re-
strict the applicability of deep learning-based models. Therefore, focused
attention is required to develop algorithms that solve small sample size
problems.
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Another major challenge associated with the paradigm of deep learning is
the lack of theoretical bounds for most of its models, along with the lack of
in-depth understanding of their functioning. Although there has been some
progress in understanding the theory behind these architectures, most of the
models are still treated as black boxes [108,109]. Biometric modalities are often
used as evidence for associating an identity with a crime scene. Fingerprints
have been used in the court of law to identify suspects and charge them
based on the confidence level of match provided by a forensic artist. However,
without the knowledge of theoretical bounds of deep learning-based systems,
in court of law, it is challenging to associate confidence levels to prosecute
suspects. This defeats the purpose of matching biometrics in surveillance or
criminal investigation. Therefore, it is essential to work toward understanding
these models better and deriving theoretical comprehension.

Homo sapiens are capable of performing challenging tasks such as object
and speech recognition, face recognition, and analysis with utmost ease. Moti-
vated by the human brain’s functioning, deep learning models and approaches
are designed to mimic it. However, for applications such as face recogni-
tion with age variations or variations caused by plastic surgery, the data
is limited, and the task at hand is further challenging in nature because of
the added variations. To facilitate research and further enhance the perfor-
mance in such scenarios, dedicated attention is required to understand brain
functioning and create automated bio-inspired algorithms. Recently Nagpal
et al. [110] proposed understanding the human brain via functional mag-
netic resonance imaging studies to develop algorithms that imitate the hu-
man brain. Fong et al. [111] have also proposed neurally weighted machine
learning, in which the weights of deep learning architectures are learned from
functional magnetic resonance imaging responses collected to measure brain
activity while volunteers are viewing images. Focused research to develop
brain-inspired algorithms can lead to advancements in deep learning and the
development of sophisticated architectures to improve performance of auto-
mated systems for these challenging tasks.
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Recurrent neural network based language model. Interspeech, 2:3, 2010.

97. I. Sutskever, J. Martens, and G. E. Hinton. Generating text with recur-
rent neural networks. In International Conference on Machine Learning,
pp. 1017–1024, ACM, New York, 2011.

98. S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.



Deep Learning: Fundamentals and Beyond 31

99. T. Mikolov, A. Joulin, S. Chopra, M. Mathieu, and M. A. Ranzato.
Learning longer memory in recurrent neural networks. CoRR,
abs/1412.7753, 2014.

100. H. Sak, A. Senior, and F. Beaufays. Long short-term memory recur-
rent neural network architectures for large scale acoustic modeling. In
International Speech Communication Association, Singapore, 2014.

101. I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning
with neural networks. In Neural Information Processing Systems, Mon-
treal, Canada, 2014.

102. H. Zen and H. Sak. Unidirectional long short-term memory recurrent
neural network with recurrent output layer for low-latency speech syn-
thesis. In International Conference on Acoustics, Speech, and Signal
Processing, pp. 4470–4474, IEEE Computer Society, Washington, DC,
2015.

103. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Advances in Neural Information Processing Systems, pp. 2672–2680,
Curran Associates, Red Hook, NY, 2014.

104. L. Tran, X. Yin, and X. Liu. Disentangled representation learning GAN
for pose-invariant face recognition. In Conference on Computer Vision
and Pattern Recognition, Vol. 4, p. 7, 2017.

105. X. Yin, X. Yu, K. Sohn, X. Liu, and M. Chandraker. Towards large-pose
face frontalization in the wild. CoRR, abs/1704.06244, 2017.

106. S. Tariyal, A. Majumdar, R. Singh, and M. Vatsa. Deep dictionary learn-
ing. IEEE Access, 4:10096–10109, 2016.

107. I. Manjani, S. Tariyal, M. Vatsa, R. Singh, and A. Majumdar. Detect-
ing silicone mask based presentation attack via deep dictionary learn-
ing. IEEE Transactions on Information Forensics and Security, 12(7):
1713–1723, 2017.

108. S. Arora, A. Bhaskara, R. Ge, and T. Ma. Provable bounds for learn-
ing some deep representations. In International Conference on Machine
Learning, pp. 584–592, JMLR, 2014.

109. R. Shwartz-Ziv and N. Tishby. Opening the black box of deep neural
networks via information. CoRR, abs/1703.00810, 2017.

110. S. Nagpal, M. Vatsa, and R. Singh. Sketch recognition: What lies ahead?
Image and Vision Computing, 55:9–13, 2016.

111. R. Fong, W. J. Scheirer, and D. D. Cox. Using human brain activity to
guide machine learning. CoRR, abs/1703.05463, 2017.



http://taylorandfrancis.com


2

Unconstrained Face Identification and
Verification Using Deep Convolutional
Features

Jun-Cheng Chen�, Rajeev Ranjan�, Vishal M. Patel,
Carlos D. Castillo, and Rama Chellappa

CONTENTS

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Face detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.2 Facial landmark detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.3 Feature representation for face recognition . . . . . . . . . . . . . 37
2.2.4 Metric learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Proposed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.1 HyperFace: A multitask face detector . . . . . . . . . . . . . . . . . . . 40
2.3.2 Deep convolutional face representation . . . . . . . . . . . . . . . . . 44
2.3.3 Joint Bayesian metric learning . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.1 Face detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.2 Facial-landmark detection on IJB-A . . . . . . . . . . . . . . . . . . . . 48
2.4.3 IJB-A and JANUS CS2 for face

identification/verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.4 Performance evaluations of face identification/

verification on IJB-A and JANUS CS2 . . . . . . . . . . . . . . . . . 51
2.4.5 Labeled faces in the wild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.6 Comparison with methods based on

annotated metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.7 Run time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5 Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

�The first two authors equally contributed to this book chapter.

33



34 Deep Learning in Biometrics

2.1 Introduction

Face recognition is a challenging problem in computer vision and has been
actively researched for more than two decades [1]. There are two major tasks
of strong interests: face identification and face verification. Face identification
aims to identify the subject identity of a query image or video from a set of
enrolled persons in the database. On the other hand, face verification, given
two images or videos, determines whether they belong to the same person.
Since the early 1990s, numerous algorithms have been shown to work well
on images and videos that are collected in controlled settings. However, the
performance of these algorithms often degrades significantly on images that
have large variations in pose, illumination, expression, aging, and occlusion.
In addition, for an automated face recognition system to be effective, it also
needs to handle errors that are introduced by algorithms for automatic face
detection and facial landmark detection.

Existing methods have focused on learning robust and discriminative rep-
resentations from face images and videos. One approach is to extract an over-
complete and high-dimensional feature representation followed by a learned
metric to project the feature vector onto low-dimensional space and then com-
pute the similarity scores. For example, high-dimensional multi-scale local bi-
nary pattern (LBP) [2] features extracted from local patches around facial
landmarks and Fisher vector (FV) [3,4] features have been shown to be effec-
tive for face recognition. Despite significant progress, the performance of these
systems has not been adequate for deployment. However, with the availabil-
ity of millions of annotated data, faster GPUs and a better understanding of
the nonlinearities, deep convolutional neural networks (DCNNs) yield much
better performance on tasks such as object recognition [5,6], object/face de-
tection [7,8], and face recognition [9,10]. It has been shown that DCNN models
can not only characterize large data variations, but also learn a compact and
discriminative representation when the size of the training data is sufficiently
large. In addition, it can be generalized to other vision tasks by fine-tuning
the pretrained model on the new task [11].

In this chapter, we present an automated face-recognition system. Because
of the robustness of DCNNs, we build each component of our system based
on separate DCNN models. The module for face detection and face alignment
tasks uses the AlexNet proposed in [5] as the base DCNN architecture coupled
with multitask learning to perform both tasks simultaneously. For face identi-
fication and verification, we train a DCNN model using the CASIA-WebFace
[12] data set. Finally, we compare the performance of our approach with
many face matchers on the Intelligence Advanced Research Projects Activity
(IARPA) Janus Benchmark A (IJB-A) data set, which are being carried out
or have been recently reported by the National Institute of Standards and
Technology [13]. The proposed system is automatic and yields comparable or
better performance than other existing algorithms when evaluated on IJB-A
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and JANUS CS2 data sets. Although the IJB-A data set contains significant
variations in pose, illumination, expression, resolution, and occlusion, which
are much harder than the Labeled Faces in the Wild (LFW) data set, we
present verification results for the LFW data set, too.

In addition, the system presented in this chapter differs from its predeces-
sor by Chen et al. [14] in the following ways: (1) instead of separate components
for face detection and facial landmark detection, we adopt HyperFace [15] as
the preprocessing module, which not only simultaneously performs face detec-
tion and facial landmark localization, but also achieves better results than its
predecessor [14]. Meanwhile, because the quality of the detected facial land-
marks has improved, the proposed system can yield improved results with-
out applying any fine-tuning for the pretrained DCNN model on the target
training data as its predecessor [14] did. In the experimental section, we also
demonstrate the improvement as a result of media-sensitive pooling where we
first average the features separately according to their media types and then
perform the second average.

In the rest of the chapter, we briefly review closely related works in
Section 2.2; we present the design details of a deep learning system for uncon-
strained face recognition, including face detection, face alignment, and face
identification/verification in Section 2.3; experimental results using IJB-A,
JANUS CS2, and LFW data sets are presented in Section 2.4; some open is-
sues regarding the use of DCNNs for face recognition problems are discussed
in Section 2.5; and we conclude with a brief summary in Section 2.6.

2.2 Related Work

An automatic face-recognition system consists of the following components:
(1) face detection, (2) facial landmark detection to align faces, and (3) face
identification/verification to identify a subject’s identity or to determine two
faces from the same identity or not. As a result of the large number of pub-
lished papers, we briefly review some relevant works for each component.

2.2.1 Face detection

The face detection method introduced by Viola and Jones [16] is based on
cascaded classifiers built using the Haar wavelet features. Since then, a va-
riety of sophisticated cascade-based face detectors such as Joint Cascade
[17], SURF Cascade [18], and CascadeCNN [19] have demonstrated improved
performance. Zhu and Ramanan [20] improved the performance of the face-
detection algorithm using the deformable part model (DPM) approach, which
treats each facial landmark as a part and uses the histogram of oriented
gradient features to simultaneously perform face detection, pose estimation,



36 Deep Learning in Biometrics

and landmark localization. A recent face detector, HeadHunter [21], shows
competitive performance using a simple DPM. However, the key challenge in
unconstrained face detection is that features like Haar wavelets and histogram
of gradient do not capture the salient facial information at different poses and
illumination conditions. To overcome these limitations, few DCNN-based face-
detection methods have been proposed in the literature such as Faceness [22],
DDFD [23], and CascadeCNN [19]. It has been shown in [11] that a DCNN
pretrained with the Imagenet data set can be used as a meaningful feature
extractor for various vision tasks. The method based on Regions with CNN
(R-CNN) [24] computes region-based deep features and attains state-of-the-art
face detection performance. Additionally, because the deep pyramid [25]
removes the fixed-scale input dependency in DCNNs, it is attractive to be
integrated with the DPM approach to further improve the detection accuracy
across scale [8]. A deep feature-based face detector for mobile devices was pro-
posed in [26]. Jiang and Learned-Miller [27] adapted the Faster R-CNN [28] for
face detection using the new face-detection data set, WIDER FACE [29], for
training and achieved top performance on various face-detection benchmarks.
Hu and Ramanan [30] showed that contextual information is useful for finding
tiny faces, and it models both appearance and context of faces by using the
features of different layers of a convolutional neural network (CNN) to detect
tiny faces. (i.e., the lower level features are for semantics and higher level for
context.) In particular, Ranjan et al. [15,31] developed a single multi-task
deep network for various facial analytic tasks, and the results showed that
multi-task learning helps improve the performance for face detection, but also
for other tasks, including fiducial point detection and face recognition.

2.2.2 Facial landmark detection

Facial landmark detection is an important component for a face identification/
verification system to align the faces into canonical coordinates and to improve
the performance of verification algorithms. Pioneering works such as Active
Appearance Models [32] and Active Shape Models [33] are built using the PCA
constraints on appearance and shape. Cristinacce and Cootes [34] generalized
the Active Shape Model to a Constrained Local Model, in which every land-
mark has a shape-constrained descriptor to capture the appearance. Zhu and
Ramanan [20] used a part-based model for face detection, pose estimation, and
landmark localization assuming the face shape to be a tree structure. Asthana
et al. [35] combined the discriminative response map fitting with a Constrained
Local Model. In addition, Cao et al. [36] follows the procedure as cascaded pose
regression proposed by Dollár et al. [37], which is feature extraction followed
by a regression stage. However, unlike cascaded pose regression which uses
pixel difference as features, it trains a random forest based on LBPs. In gen-
eral, these methods learn a model that directly maps the image appearance to
the target output. Nevertheless, the performance of these methods depends on
the robustness of local descriptors. The deep features are shown to be robust
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to different challenging variations. Sun et al. [38] proposed a cascade of care-
fully designed CNNs, in which at each level, outputs of multiple networks are
fused for landmark estimation and achieve good performance. Unlike [38], the
multi-task detectors [15,31] fuse the features of different layers and perform
the face detection and facial landmark detection at the same time, which not
only resolves the scale issue, but also uses the rich information from different
layers to achieve better performance. Kumar et al. [39] proposed an iterative
conditional deep regression framework for fiducial point detection, which uses
the input face along with the predicted points of the previous iteration to-
gether to improve the results. Kumar and Chellappa [40] proposed a novel
deep regression framework that consists of several branches of subnetworks
from a main deep network to take the spatial relationship of fiducial points into
consideration.

2.2.3 Feature representation for face recognition

Learning invariant and discriminative feature representations is a critical step
in a face-verification system. Ahonen et al. [41] showed that the LBP is
effective for face recognition. Chen et al. [2] demonstrated good results for
face verification using the high-dimensional multi-scale LBP features extracted
from patches obtained around facial landmarks. However, recent advances in
deep learning methods have shown that compact and discriminative repre-
sentations can be learned using a DCNN trained with very large data sets.
Taigman et al. [42] learned a DCNN model on the frontalized faces generated
with a general three-dimensional (3D) shape model from a large-scale face
data set and achieved better performance than many traditional methods.
Sun et al. [43] achieved results that surpass human performance for face ver-
ification on the LFW data set using an ensemble of 25 simple DCNNs with
fewer layers trained on weakly aligned face images from a much smaller data
set than [42]. Schroff et al. [9] adapted a state-of-the-art object recognition
network to face recognition and trained it using a large-scale unaligned pri-
vate face data set with the triplet loss. Parkhi et al. [10] trained a very deep
convolutional network based on VGGNet for face verification and demon-
strated impressive results. Abd-Almageed et al. [44] handles pose variations
by learning separate DCNN models for frontal, half-profile, and full-profile
poses to improve face recognition performance in the real world. Furthermore,
Masi et al. [45] used 3D morphable models to augment the CASIA-WebFace
data set with large amounts of synthetic faces to improve the recognition
performance instead of collecting more data through crowdsourcing the an-
notation tasks. Ding and Tao [46] proposed to fuse the deep features around
facial landmarks from different layers followed by a new triplet-loss function,
which achieves state-of-the-art performance for video-based face recognition.
A neural aggregated network [47] has been proposed to aggregate the multiple
face images in the video for a succinct and robust representation for video face
recognition. Bodla et al. [48] proposed a fusion network to combine the face
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representations from two different DCNN models to improve the recognition
performance. These studies essentially demonstrate the effectiveness of the
DCNN model for feature learning and detection, recognition, and verification
problems.

2.2.4 Metric learning

Learning a similarity measure from data is the other key component for im-
proving the performance of a face verification system. Many approaches have
been proposed that essentially exploit the label information from face images
or face pairs. For instance, Weinberger et al. [49] proposed the Large Margin
Nearest Neighbor metric, which enforces the large margin constraint among all
triplets of labeled training data. Taigman et al. [50] learned the Mahalanobis
distance using the Information Theoretic Metric Learning method [51]. Chen
et al. [52] proposed a joint Bayesian approach for face verification that models
the joint distribution of a pair of face images and uses the ratio of between-class
and within-class probabilities as the similarity measure. Hu et al. [53] learned
a discriminative metric within the deep neural network framework. Schroff
et al. [9] and Parkhi et al. [10] optimized the DCNN parameters based on the
triplet loss, which directly embeds the DCNN features into a discriminative
subspace and presented promising results for face verification. In addition,
Wen et al. [54] proposed a new loss that takes the centroid for each class into
consideration and uses it as a regularization to the softmax loss in addition to
a residual neural network for learning more discriminative face representation.
Liu et al. [55] proposed a modified softmax loss by imposing discriminative
constraints on a hypersphere manifold to learn angularly discriminative fea-
tures, which greatly improves the recognition performance. Ranjan et al. [56]
also proposed a modified softmax loss regularized with the scale L2-norm
constraint, which helps to learn angularly discriminative features as well and
improves the recognition performance significantly.

2.3 Proposed System

The proposed system includes the whole pipeline for performing automatic
face identification and verification. We first perform face detection and facial-
landmark detection simultaneously with the proposed multitask face detector
for each image and video frame. Then, we align the faces into canonical coor-
dinates using the detected landmarks. Finally, we perform face recognition by
computing the similarity scores between the query and the enrolled gallery for
face identification or between a pair of images or video frames for face verifi-
cation. The system is illustrated in Figure 2.1. The details of each component
are presented in the following subsections.
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2.3.1 HyperFace: A multitask face detector

HyperFace [15] is a single DCNN model for simultaneous face detection, land-
mark localization, pose estimation, and gender classification. The network
architecture is deep in both vertical and horizontal directions as shown in the
face preprocessing part of Figure 2.1. HyperFace consists of three modules.
The first one generates class-independent region proposals from the given
image and scales them to the resolution of 227 × 227 pixels. The second
module is a DCNN model that takes in the resized candidate regions and
classifies them as face or nonface. If a region gets classified as a face, the
network additionally predicts facial-landmark locations, 3D head pose, and
gender information. The third module is a postprocessing step, which involves
iterative region proposals and landmarks-based non-maximum suppression to
boost the face-detection score and improve the performance of individual tasks
(Figure 2.2).

HyperFace uses the well-known AlexNet [57] for image classification as
the base network. The network consists of five convolutional layers along with
three fully connected layers. The network is created by the following two obser-
vations: (1) The features in CNN are distributed hierarchically in the network.
The lower-layer features are informative for landmark localization and pose

FIGURE 2.2
Sample results of HyperFace with detected face bounding boxes, fiducial
points, and 3D head pose in which magenta boxes refer the gender as female
and blue boxes as male.
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estimation, and the higher-layer features are suitable for more semantic tasks
such as detection or classification [58]. (2) Learning multiple correlated tasks
simultaneously builds a synergy and improves the performance of individual
tasks. Hence, to simultaneously learn face detection, landmarks, pose, and
gender, HyperFace fuses the features from the intermediate layers of the net-
work and learns multiple tasks on top of it. Because the adjacent layers are
highly correlated, we skip some layers and fuse the max1, conv3, and pool5
layers of AlexNet. The feature maps for these layers have different dimensions,
27× 27 × 96, 13× 13 × 384, 6× 6× 256, respectively, so we add conv1a and
conv3a convolutional layers to pool1 and conv3 layers to obtain consistent
feature maps of dimensions 6 × 6 × 256 at the output. We then concatenate
the output of these layers along with pool5 to form a 6× 6× 768 dimensional
feature maps followed by a 1× 1 kernel convolution layer (conv all) to reduce
the dimensions to 6 × 6 × 192. We add a fully connected layer (fc all) to
conv all, which outputs a 3072 dimensional feature vector. Then, we split the
network into five separate branches corresponding to the different tasks. We
add fc detection, fc landmarks, fc visibility, fc pose, and fc gender fully
connected layers, each of dimension 512, to fc all. Finally, a fully connected
layer is added to each of the branches to predict the labels for each task. After
every convolution or a fully connected layer, we deploy the Rectified Layer
Unit. In addition, we did not include any pooling operation in the fusion net-
work because it provides local invariance, which is not desired for the facial
landmark localization task. Task-specific loss functions are then used to learn
the weights of the network.

For HyperFace, we use a AFLW [59] data set for training. It contains
25,993 faces in 21,997 real-world images with full pose, expression, ethnicity,
age, and gender variations. It provides annotations for 21 landmark points
per face, along with the face bounding box, face pose (yaw, pitch, and roll),
and gender information. We randomly selected 1000 images for testing and
keep the rest for training the network. Different objective functions are used
for training the tasks of face detection, facial-landmark localization, facial-
landmark visibility, 3D head-pose estimation, and gender-classification tasks.

Face Detection

We use the Selective Search [60] algorithm to generate region proposals for
faces in an image. A region having an overlap of more than 0.5 with the ground-
truth bounding box is considered a positive sample (l = 1). The candidate
regions with overlap less than 0.35 are treated as negative instance (l = 0). All
the other regions are ignored. We use the binary cross entropy loss function
given by (2.1) for training the face-detection task.

lossD = −(1−�) log(1−p)− � log(p) (2.1)

where p is the probability that the candidate region is a face.
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Landmark Localization

We use the 21 point annotations of facial-landmark locations as provided in
the AFLW data set [59]. Besides the facial-landmark annotations, the data
set also provides the annotations of visibility for each landmark because some
of the landmark points are invisible under different head poses. We consider
regions with overlap greater than 0.35 with the ground truth for learning this
task, while ignoring the rest. A region is represented as {x, y, w, h}, where
(x, y) are the coordinates of the center of the region and (w, h) the width
and height of the region, respectively. Each visible landmark point is shifted
with respect to the region center (x, y) and normalized by (w, h) as given
by (ai, bi) = (xi−x

w , yi−y
h ), where (xi, yi)’s are the given ground-truth fiducial

coordinates. The (ai, bi)’s are treated as labels for training the landmark-
localization task using the Euclidean loss weighted by the visibility factor.
The labels for landmarks, which are not visible, are taken to be (0, 0). The
loss in predicting the landmark location is computed from (2.2) as follows:

lossL =
1

2N

N∑

i=1

vi((x̂i − ai)
2 + ((ŷi − bi)

2) (2.2)

where: (xi, yi) is the ith landmark location predicted by the network, relative
to a given region, N is the total number of landmark points, which is 21 for
the AFLW data set. The visibility factor, vi, is 1 if the ith landmark is visible
in the candidate region and is 0 otherwise. This implies that there is no loss
corresponding to invisible points, and hence they do not take part during
back-propagation.

Learning Visibility

We also learn the visibility factor to test the presence of the predicted land-
mark. For a given region with overlap higher than 0.35, we use the Euclidean
loss to train the visibility as shown in (2.3):

lossV =
1

N

∑

i=1

N(v̂i − vi)
2 (2.3)

where v̂i is the predicted visibility of ith landmark. The visibility label, vi, is
1 if the ith landmark is visible in the candidate region and is 0 otherwise.

Pose Estimation

We use the Euclidean loss to train the head pose estimates of roll (p1), pitch
(p2), and yaw (p3). We compute the loss for candidate regions having an
overlap more than 0.5 with the ground truth by using (2.4):

lossP =
(p̂1 − p1)

2 + (p̂2 − p2)
2 + (p̂3 − p3)

2

3
(2.4)

where (p̂1, p̂2, p̂3) are the estimates for roll, pitch, and yaw, respectively.
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Gender Recognition

Gender classification is a two-class problem. For a candidate region with over-
lap of 0.5 with the ground truth, we compute the loss by using (2.5):

lossG = −(1−g) · log(1−g0)− g · log(g1), (2.5)

where g = 0 if the gender is male, and g = 1 otherwise. In addition, (g0, g1)
are the probabilities for male and female, respectively, computed from the
network. The total loss is computed as the weighted sum of the five individual
losses as shown in (2.6):

lossall =

t=5∑

t=1

λtlosst, (2.6)

where losst is the individual loss corresponding to t-th task. We choose
(λD =1, λL = 5, λV = 0.5, λP = 5, λG = 2) for our experiments. Higher
weights are assigned to landmark localization and pose-estimation tasks be-
cause they need spatial accuracy.

For a given a test image, we first extract the candidate region proposals us-
ing selective search. For each of the regions, we predict the task labels by a for-
ward pass through the HyperFace network. Only regions with detection scores
above a certain threshold are classified as face and processed for subsequent
tasks. Sample results are illustrated in Figure 2.3. The results demonstrate

Conv12 Conv52Conv42Conv32Conv22

FIGURE 2.3
An illustration of some feature maps of conv12, conv22, conv32, conv42, and
conv52 layers of the DCNN trained for the face-identification task. At up-
per layers, the feature maps capture more global shape features, which are
also more robust to illumination changes than conv12. The feature maps are
rescaled to the same size for visualization purpose. The green pixels represent
high activation values, and the blue pixels represent low activation values as
compared to the green.
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that HyperFace can reliably detect the faces, localize fiducial points, classify
the gender, and estimate 3D head pose for faces in large pose variations. For
this chapter, we focus on discussing face detection and facial-landmark detec-
tion. Other details and results including training part of HyperFace, we refer
interested readers to [15].

2.3.2 Deep convolutional face representation

In this work, we train the deep convolutional networks, which are trained using
tight face bounding boxes. The architecture of the network is summarized in
Table 2.1.

Stacking small filters to approximate large filters and building very deep
convolutional networks reduce the number of parameters, but also increase the
nonlinearity of the network in [6,61]. In addition, the resulting feature repre-
sentation is compact and discriminative. Therefore, we use the same network
architecture presented in [62] and train it using the CASIA-WebFace data set
[12]. The dimensionality of the input layer is 100 × 100 × 3 for RGB images.
The network includes 10 convolutional layers, 5 pooling layers, and 1 fully
connected layer. Each convolutional layer is followed by a parametric rectified
linear unit [63], except the last one, conv52. Moreover, two local normalization
layers are added after conv12 and conv22, respectively, to mitigate the effect
of illumination variations. The kernel size of all filters is 3× 3. The first four

TABLE 2.1
The architectures of the DCNN for face identification

Name Type Filter size/stride #Params

conv11 convolution 3×3/1 0.84K
conv12 convolution 3×3/1 18K
pool1 max pooling 2×2/2
conv21 convolution 3×3/1 36K
conv22 convolution 3×3/1 72K
pool2 max pooling 2×2/2
conv31 convolution 3×3/1 108K
conv32 convolution 3×3/1 162K
pool3 max pooling 2×2/2
conv41 convolution 3×3/1 216K
conv42 convolution 3×3/1 288K
pool4 max pooling 2×2/2
conv51 convolution 3×3/1 360K
conv52 convolution 3×3/1 450K
pool5 avg pooling 7×7/1
dropout dropout (40%)
fc6 fully connected 10,548 3296K
loss softmax 10,548
total 5M
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pooling layers use the max operator, and pool5 uses average pooling. The
feature dimensionality of pool5 is thus equal to the number of channels of
conv52, which is 320. The dropout ratio is set as 0.4 to regularize fc6 because
of the large number of parameters (i.e., 320 × 10,548). The pool5 feature is
used for face representation. The extracted features are further L2-normalized
to unit length before the metric learning stage. If there are multiple images
and frames available for the subject template, we use the average of pool5
features as the overall feature representation.

In Figure 2.4, we show some feature-activation maps of the DCNN model.
At upper layers, the feature maps capture more global shape features, which
are also more robust to illumination changes than conv12 in which the green
pixels represent high-activation values, and the blue pixels represent low-
activation values compared to the green.

For face recognition, the DCNN is implemented using caffe [64] and trained
on the CASIA-WebFace data set. The CASIA-WebFace data set contains
494,414 face images of 10,575 subjects downloaded from the IMDB website.
After removing 27 overlapping subjects with the IJB-A data set, there are
10,548 subjects and 490,356 face images. For each subject, there still exists
several false images with wrong identity labels and few duplicate images. All
images are scaled into [0, 1] and subtracted from the mean. The data are
augmented with horizontal flipped face images. We use the standard batch
size 128 for the training phase. Because it only contains sparse positive and
negative pairs per batch in addition to the false-image problems, we do not
take the verification cost into consideration as is done in [43]. The initial neg-
ative slope for a parametric rectified linear unit is set to 0.25 as suggested
in [63]. The weight decay of all convolutional layers are set to 0, and the
weight decay of the final fully connected layer to 5e-4. In addition, the learn-
ing rate is set to 1e-2 initially and reduced by half every 100,000 iterations.

(b)(a) (c)

FIGURE 2.4
Faces not detected or failed for other tasks by HyperFace usually in very
extreme pose, low-resolution, occlusion, and other conditions contain limited
information for face recognition. Although the gender for Dalai Lama (c)
is wrongly classified, the face bounding boxes and fiducial points are still
detected with reasonable quality. This also demonstrates the robustness of
HyperFace.
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The momentum is set to 0.9. Finally, we use the snapshot of 1,000,000th
iteration for all our experiments.

2.3.3 Joint Bayesian metric learning

To use the positive and negative label information available from the train-
ing data set, we learn a joint Bayesian metric, which has achieved good
performances on face-verification problems [52,65]. Instead of modeling the
difference vector between two faces, this approach directly models the joint dis-
tribution of feature vectors of both ith and jth images, {xi,xj}, as a Gaussian.
Let P (xi,xj |HI) ∼ N(0,ΣI) when xi and xj belong to the same class, and
P (xi,xj |HE) ∼ N(0,ΣE) when they are from different classes. In addition,
each face vector can be modeled as, x = μ+ε, where μ stands for the identity
and ε for pose, illumination, and other variations. Both μ and ε are assumed
to be independent zero-mean Gaussian distributions, N(0,Sμ) and N(0,Sε),
respectively.

The log likelihood ratio of intra- and inter-classes, r(xi,xj), can be com-
puted as follows:

r(xi,xj) = log
P (xi,xj |HI)

P (xi,xj |HE)
= xT

i Mxi + xT
j Mxj − 2xT

i Rxj (2.7)

where M and R are both negative semi-definite matrices. Equation 2.7 can
be rewritten as (xi − xj)

TM(xi − xj) − 2xT
i Bxj , where B = R −M. More

details can be found in [52]. Instead of using the EM algorithm to estimate
Sμ and Sε, we optimize the distance in a large-margin framework as follows:

argminM,B,b

∑

i,j

max[1− yij(b− (xi−xj)
TM(xi−xj) + 2xT

i Bxj), 0], (2.8)

where:
b ∈ R is the threshold
yij is the label of a pair: yij = 1 if person i and j are the same and

yij = −1, otherwise
For simplicity, we denote (xi−xj)

TM(xi−xj)− 2xT
i Bxj as dM,B(xi,xj).

M and B are updated using stochastic gradient descent as follows and are
equally trained on positive and negative pairs in turn:

Mt+1 =

{
Mt, if yij(bt−dM,B(xi,xj)) > 1
Mt−γyijΓij , otherwise,

Bt+1 =

{
Bt, if yij(bt−dM,B(xi,xj)) > 1
Bt + 2γyijxix

T
j , otherwise,

bt+1 =

{
bt, if yij(bt−dM,B(xi,xj)) > 1
bt + γbyij , otherwise,

(2.9)
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where:

Γij = (xi−xj)(xi−xj)
T

γ is the learning rate for M and B, and γb for the bias b

We use random semi-definite matrices to initialize both M = VVT and
B = WWT where both V and W ∈ R

d×d, and vij and wij ∼ N(0, 1).
Note that M and B are updated only when the constraints are violated. In
our implementation, the ratio of the positive and negative pairs that we gen-
erate based on the identity information of the training set is 1 verus 40. In
addition, the other reason to train the metric instead of using traditional EM
is that for IJB-A training and test data, some templates only contain a single
image. More details about the IJB-A data set are given in Section 2.4.

In general, to learn a reasonable distance measure directly using pairwise
or triplet metric learning approach requires a huge amount of data (i.e., the
state-of-the-art approach [9] uses 200 million images). In addition, the pro-
posed approach decouples the DCNN feature learning and metric learning be-
cause of memory constraints. To learn a reasonable distance measure requires
generating informative pairs or triplets. The batch size used for stochastic gra-
dient descent is limited by the memory size of the graphics card. If the model
is trained end to end, then only a small batch size is available for use. Thus,
in this work, we perform DCNN model training and metric learning indepen-
dently. In addition, for the publicly available deep model [10], it is also trained
first with softmax loss and followed by fine-tuning the model with verification
loss with freezing the convolutional and fully connected layers except the last
one to learn the transformation, which is equivalent to the proposed approach.

2.4 Experimental Results

In this section, we present the results of the proposed automatic system for
face detection on the FDDB data set [66], facial-landmark localization on the
AFW data set [20], and face verification tasks on the challenging IJB-A [67],
its extended version Janus Challenging set 2 (JANUS CS2) data set, and
the LFW data set. The JANUS CS2 data set contains not only the sampled
frames and images in the IJB-A, but also the original videos. In addition, the
JANUS CS2 data set∗ includes considerably more test data for identification
and verification problems in the defined protocols than the IJB-A data set.
The receiver operating characteristic (ROC) curves and the cumulative match
characteristic (CMC) scores are used to evaluate the performance of different
algorithms for face verification. The ROC curve measures the performance in
the verification scenarios, and the CMC score measures the accuracy in closed
set identification scenarios.

∗The JANUS CS2 data set is not publicly available yet.
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2.4.1 Face detection

To demonstrate the effectiveness of HyperFace for face detection, we evaluate
it using the challenging FDDB benchmark [66]. HyperFace achieves good per-
formance with mAP of 90.1% in the FDDB data set with a large performance
margin compared to most algorithms. Some of the recent published methods
compared in the FDDB evaluation include Faceness [22], HeadHunter [21],
JointCascade [17], CCF [68], Squares-ChnFtrs-5 [21], CascadeCNN [19], Struc-
tured Models [69], DDFD [23], NDPFace [70], PEP-Adapt [71], DP2MFD [8],
and TSM [72]. More comparison results with other face-detection data sets
are available in [8,15]. In addition, we illustrate typical faces in the IJB-A
data set that are not detected by HyperFace, and we can find the faces to
be usually in extreme conditions that contain limited information for face
identification/verification (Figure 2.5).

2.4.2 Facial-landmark detection on IJB-A

We evaluate the performance of different landmark localization algorithms on
the AFW data set [20]. The data set contains faces with full-pose variations.
Some of the methods compared include Multiview Active Appearance Model-
based method [20], Constrained Local Model [73], Oxford facial landmark de-
tector [74], Zhu [20], FaceDPL [75], Multitask Face, which performs multi-task
learning as HyperFace, but without fusing features from intermediate layers,
and R-CNN Fiducial, which is trained in the single-task setting. Although the
data sets provide ground-truth bounding boxes, we do not use them for evalu-
ating on HyperFace, Multitask Face, and R-CNN Fiducial. Instead we use the
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FIGURE 2.5
Face detection performance evaluation on the FDDB data set.
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FIGURE 2.6
Facial-landmark detection performance evaluation on the AFW data set.
CLM, Constrained Local Model; Multi. AAMs, Multiview Active Appearance
Model.

respective algorithms to detect both the face and its fiducial points. Because
R-CNN Fiducial cannot detect faces, we provide it with the detections from
the HyperFace. Figure 2.6 compares the performance of different landmark
localization methods on the AFW data set using the protocol defined in [75].
The data set provides six key points for each face, which are: left eye center,
right eye center, nose tip, mouth left, mouth center, and mouth right. We
compute the error as the mean distance between the predicted and ground-
truth key points, normalized by the face size. The plots for comparison were
obtained from [75]. As can be seen from the figure, HyperFace outperforms
many recent state-of-the-art landmark-localization methods. The HyperFace
has an advantage over them because it uses the intermediate layers for fusion.
The local information is contained well in the lower layers of CNN and be-
comes invariant as depth increases. Fusing the layers brings out that hidden
information, which boosts the performance for the landmark-localization task.

2.4.3 IJB-A and JANUS CS2 for face
identification/verification

For the face identification/verification task, both IJB-A and JANUS CS2 data
sets contain 500 subjects with 5397 images and 2042 videos split into 20,412
frames, which is 11.4 images and 4.2 videos per subject. Sample images and
video frames from the data sets are shown in Figure 2.7. The IJB-A evaluation
protocol consists of verification (1:1 matching) over 10 splits. Each split con-
tains around 11,748 pairs of templates (1756 positive and 9992 negative pairs)
on average. Similarly, the identification (1:N search) protocol also consists of
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FIGURE 2.7
Sample images and frames from the IJB-A (top) and JANUS CS2 data sets
(bottom). Challenging variations resulting from pose, illumination, resolution,
occlusion, and image quality are present in these images.

10 splits, which are used to evaluate the search performance. In each search
split, there are about 112 gallery templates and 1763 probe templates (i.e.,
1187 genuine probe templates and 576 impostor probe templates). On the
other hand, for the JANUS CS2, there are about 167 gallery templates and
1763 probe templates, and all of them are used for both identification and
verification. The training set for both data sets contains 333 subjects, and the
test set contains 167 subjects without any overlapping subjects. Ten random
splits of training and testing are provided by each benchmark, respectively.
The main differences between IJB-A and JANUS CS2 evaluation protocols are
that (1) IJB-A considers the open-set identification problem and the JANUS
CS2 considers the closed-set identification and (2) IJB-A considers the more
difficult pairs, which are the subsets from the JANUS CS2 data set.

Unlike LFW and YTF data sets, which only use a sparse set of negative
pairs to evaluate the verification performance, the IJB-A and JANUS CS2
both divide the images and video frames into gallery and probe sets so that
all the available positive and negative pairs are used for the evaluation. Also,
each gallery and probe set consist of multiple templates. Each template con-
tains a combination of images or frames sampled from multiple image sets or
videos of a subject. For example, the size of the similarity matrix for JANUS
CS2 split1 is 167 × 1806 where 167 are for the gallery set and 1806 for the
probe set (i.e., the same subject reappears multiple times in different probe
templates). Moreover, some templates contain only one profile face with a
challenging pose with low-quality imagery. In contrast to LFW and YTF data
sets, which only include faces detected by the Viola Jones face detector [16],
the images in the IJB-A and JANUS CS2 contain extreme-pose, illumina-
tion, and expression variations. These factors essentially make the IJB-A and
JANUS CS2 challenging face-recognition data sets [67].
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2.4.4 Performance evaluations of face identification/
verification on IJB-A and JANUS CS2

To evaluate the performance of the proposed approach, we present the
identification/verification results of the proposed approach for the IJB-A data
set in Table 2.2. For each face, we slightly shift it with a small offset (i.e., three
to five pixels) and take 25 crops followed by average pooling. Besides using
the average feature representation, we also perform media averaging, which
is to first average the features coming from the same media (image or video)
and then further average the media average features to generate the final fea-
ture representation. We show the results before and after media averaging for
the IJB-A data set in Table 2.2. It is clear that media averaging significantly
improves the performance.

Tables 2.3 and 2.4 summarize the scores (i.e., both ROC and CMC num-
bers) produced by different face identification/verification methods on the
IJB-A and JANUS CS2 data sets, respectively. For the IJB-A data set, we
compare our results with DCNNbl (bilinear CNN [76]), DCNNpose (multi-
pose DCNN models [44]), NAN [47], DCNN3d [45], template adaptation (TP)
[77], DCNNtpe [78], DCNNl2+tpe [56], and the one [13] reported recently by
NIST where JanusB-092015 achieved the best verification results. For the
JANUS CS2 data set, Table 2.4 includes, a DCNN-based method [79], Fisher
vector-based method [3], DCNNpose [44], DCNN3d [45], and two commercial

TABLE 2.2
Results on the IJB-A data set. The true acceptance rate (TAR) of
all the approaches at false acceptance rate (FAR) = 0.1 and 0.01
for the ROC curves (IJB-A 1:1 verification). The Rank-1, Rank-5,
and Rank-10 retrieval accuracies of the CMC curves and TPIR at
FPIR = 0.01 and 0.1 (IJB-A 1:N identfication). We also show the
results before, DCNNcos, and after media averaging, DCNNm

cos,
where m means media averaging. DCNNm

jb refers to the results after
joint Bayesian metric and media averaging

IJB-A-Verif DCNNcos DCNNm
cos DCNNm

jb

FAR=1e-3 0.644 0.739 0.81
FAR=1e-2 0.821 0.865 0.912
FAR=1e-1 0.943 0.949 0.974

IJB-A-Ident DCNNcos DCNNm
cos DCNNm

jb

Rank-1 0.887 0.921 0.935
Rank-5 0.955 0.968 0.973
Rank-10 0.97 0.979 0.982

IJB-A-Ident DCNNcos DCNNm
cos DCNNm

jb

FPIR=0.01 0.547 0.641 0.739
FPIR=0.1 0.73 0.794 0.883



52 Deep Learning in Biometrics

T
A
B
L
E

2
.3

R
es
u
lt
s
on

th
e
IJ
B
-A

d
a
ta

se
t.
T
h
e
tr
u
e
ac
ce
p
ta
n
ce

ra
te

(T
A
R
)
o
f
a
ll
th
e
a
p
p
ro
a
ch
es

at
fa
ls
e
a
cc
ep
ta
n
ce

ra
te

(F
A
R
)=

0
.1
,

0
.0
1
,
a
n
d
0.
0
0
1
fo
r
th
e
R
O
C

cu
rv
es

(I
J
B
-A

1
:1

ve
ri
fi
ca
ti
o
n
).

T
h
e
R
a
n
k
-1
,
R
a
n
k
-5
,
a
n
d
R
a
n
k
-1
0
re
tr
ie
va
l
ac
cu
ra
ci
es

o
f
th
e

C
M
C

cu
rv
es

(I
J
B
-A

1:
N

id
en
tfi
ca
ti
o
n
).

W
e
re
p
or
t
av
er
a
g
e
a
n
d
st
a
n
d
a
rd

d
ev
ia
ti
o
n
of

th
e
1
0
sp
li
ts
.
A
ll
th
e
p
er
fo
rm

a
n
ce

re
su
lt
s
re
p
o
rt
ed

in
J
a
n
u
s
B

(J
a
n
u
sB

-0
9
2
0
1
5
)
[1
3
],
D
C
N
N

b
l
[7
6]
,
D
C
N
N

f
u
s
io
n
[8
0
],
D
C
N
N

3
d
[4
5
],
N
A
N

[4
7
],
D
C
N
N

p
o
s
e
[4
4
],

D
C
N
N

tp
e
[7
8
],
T
P

[7
7
],
a
n
d
D
C
N
N

l2
+
tp

e
[5
6
]

IJ
B
-A

-V
e
ri
f

[7
9
]

J
a
n
u
sB

[1
3
]

D
C
N
N

p
o
se

[4
4
]

D
C
N
N

b
l
[7
6
]

N
A
N

[4
7
]

D
C
N
N

3
d
[4
5
]

F
A
R
=
1e
-3

0.
51
4

0.
65

—
—

0.
88
1

0.
72
5

F
A
R
=
1e
-2

0.
73
2

0.
82
6

0.
78
7

—
0.
94
1

0.
88
6

F
A
R
=
1e
-1

0.
89
5

0.
93
2

0.
91
1

—
0.
97
8

—

IJ
B
-A

-I
d
e
n
t

[7
9
]

J
a
n
u
sB

[1
3
]

D
C
N
N

p
o
se

[4
4
]

D
C
N
N

b
l
[7
6
]

N
A
N

[4
7
]

D
C
N
N

3
d
[4
5
]

R
an

k
-1

0.
82
0

0.
87

0.
84
6

0.
89
5

0.
95
8

0.
90
6

R
an

k
-5

0.
92
9

—
—

0.
92
7

0
.9
8
0

0.
96
2

R
an

k
-1
0

—
0.
95

0.
94
7

—
0.
98
6

0.
97
7

IJ
B
-A

-V
e
ri
f

D
C
N
N

fu
si
o
n
[8
0
]

D
C
N
N

m co
s

D
C
N
N

m jb
D
C
N
N

tp
e
[7
8
]

T
P

[7
7
]

D
C
N
N

l2
+
tp
e
[5
6
]

F
A
R
=
1e
-3

0.
76

0.
73
9

0.
81

0.
81
3

—
0
.9
1
0

F
A
R
=
1e
-2

0.
88
9

0.
86
5

0.
91
2

0.
9

0.
93
9

0
.9
5
1

F
A
R
=
1e
-1

0.
96
8

0.
94
9

0.
97
4

0.
96
4

—
0
.9
7
9

IJ
B
-A

-I
d
e
n
t

D
C
N
N

fu
si
o
n
[8
0
]

D
C
N
N

m co
s

D
C
N
N

m jb
D
C
N
N

tp
e
[7
8
]

T
P

[7
7
]

D
C
N
N

l2
+
tp
e
[5
6
]

R
an

k
-1

0.
94
2

0.
92
1

0.
93
5

0.
93
2

0.
92
8

0
.9
6
1

R
a
n
k
-5

0
.9
8
0

0.
96
8

0.
97
3

—
—

—
R
a
n
k
-1
0

0
.9
8
8

0.
97
9

0.
98
2

0.
97
7

0.
98
6

0.
98
3



Unconstrained Face Identification and Verification 53

TABLE 2.4
Results on the JANUS CS2 data set. The total acceptance rate (TAR) of all
the approaches at false acceptance rate (FAR) = 0.1, 0.01, and 0.001 for the
ROC curves. The Rank-1, Rank-5, and Rank-10 retrieval accuracies of the
CMC curves. We report average and standard deviation of the 10 splits. The
performance results of DCNNpose have produced results for setup 1 only

CS2-Verif COTS GOTS FV[3] DCNNpose [44]

FAR=1e-3 — — — —
FAR=1e-2 0.581 0.467 0.411 0.897
FAR=1e-1 0.767 0.675 0.704 0.959

CS2-Ident COTS GOTS FV[3] DCNNpose [44]

Rank-1 0.551 0.413 0.381 0.865
Rank-5 0.694 0.571 0.559 0.934
Rank-10 0.741 0.624 0.637 0.949

CS2-Verif DCNN3d [45] DCNNfusion [80] DCNNm
cos DCNNm

jb

FAR=1e-3 0.824 0.83 0.790 0.881
FAR=1e-2 0.926 0.935 0.901 0.949
FAR=1e-1 - 0.986 0.971 0.988

CS2-Ident DCNN3d [45] DCNNfusion [80] DCNNm
cos DCNNm

jb

Rank-1 0.898 0.931 0.917 0.93
Rank-5 0.956 0.976 0.962 0.968
Rank-10 0.969 0.985 0.973 0.977

off-the-shelf matchers, COTS and GOTS [67]. From the ROC and CMC
scores, we see that the proposed approach achieves good performances for
face identification/verification tasks. This can be attributed to the fact that
the DCNN model does capture face variations over a large data set and gen-
eralizes well to a new small data set. In addition, with better preprocessing
modules, HyperFace, the proposed approach achieves better and compara-
ble face identification/verification than [14] without applying any fine-tuning
procedures using training data set as Chen et al. [14,80] did to boost their
performances. We conjecture that with better detected face bounding boxes
and fiducial points from HyperFace, we can reduce the false alarms caused by
face detection and perform better face alignment to mitigate the domain shift
between the training and test set.

In addition, the performance results of Janus B (JanusB-092015), DCNNbl,
and DCNNpose, systems are computed based on landmarks provided along
with the IJB-A data set.

2.4.5 Labeled faces in the wild

We also evaluate our approach on the well-known LFW data set [81] using
the standard protocol that defines 3000 positive pairs and 3000 negative pairs
in total and further splits them into 10 disjoint subsets for cross validation.



54 Deep Learning in Biometrics

Each subset contains 300 positive and 300 negative pairs. It contains 7701
images of 4281 subjects. All the faces are preprocessed using HyperFace. We
compare the mean accuracy of the proposed deep model with other state-of-
the-art deep learning–based methods: DeepFace [42], DeepID2 [43], DeepID3
[82], FaceNet [9], Yi et al. [12], Wang et al. [79], Ding and Tao [83], Parkhi et al.
[10], and human performance on the “funneled” LFW images. The results
are summarized in Table 2.5. It can be seen that our approach performs
comparable to other deep learning–based methods. Note that some of the deep
learning–based methods compared in Table 2.5 use millions of data samples
for training the model. However, we use only the CASIA data set for training
our model, which has less than 500,000 images.

2.4.6 Comparison with methods based on annotated
metadata

Most systems compared in this chapter produced the results based on land-
marks provided along with the data set. For DCNN3d [45], the number of
face images is augmented along with the original CASIA-WebFace data set
by around 2 million using 3D morphable models. On the other hand, NAN [47]
and TP [77] used data sets with more than 2 million face images to train the
model. However, the proposed network was trained with the original CASIA-
WebFace data set which contains around 500,000 images. In addition, TP
adapted the one-shot similarity framework [84] with a linear support vector
machine for set-based face verification and trained the metric on the fly with
the help of a preselected negative set during testing. Although TP achieved
significantly better results than other approaches, it takes more time during
testing than the proposed method because our metric is trained offline and
requires much less time for testing than TP. We expect the performance of
the proposed approach can also be improved by using the one-shot similarity
framework. As shown in Table 2.3, the proposed approach achieves compa-
rable results to other methods and strikes a balance between testing time
and performance. Similar to our work, DCNNtpe [78] adopted a probabilis-
tic embedding for similarity computation and HyperFace [15] for improved
face detection and fiducial point localization. In addition, we could also adopt
the novel softmax loss regularized with the scale L2-norm constraint used in
DCNNl2+tpe [56] to improve the performance of the proposed method.

2.4.7 Run time

The networks for face recognition and HyperFace were both trained and tested
with NVidia Titan-X GPU and caffe. The DCNN model for face verification
is trained on the CASIA-WebFace data set from scratch for about 2 days. In
addition, the overall time taken to perform all the four tasks of HyperFace was
3 seconds per image. The limitation was not because of CNN, but because of
selective search, which takes approximately 2 seconds to generate candidate
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region proposals. One forward pass through the HyperFace network takes only
0.2 seconds and through the recognition network takes 0.01 seconds.

2.5 Open Issues

Given sufficient number of annotated data and GPUs, DCNNs have been
shown to yield impressive performance improvements. Still many issues remain
to be addressed to make the DCNN-based recognition systems robust and
practical. We briefly discuss design considerations for each component of a
automated face identification/verification system, including:

• Face detection: Face detection is challenging because of the wide range
of variations in the appearance of faces. The variability is caused mainly
by changes in illumination, facial expression, viewpoints, occlusions, and
so on. Other factors such as blur and low resolution challenge the face
detection task.

• Fiducial detection: Most of the data sets only contain a few thousand im-
ages. A large-scale annotated and unconstrained data set will make the
face-alignment system more robust to the challenges, including extreme-
pose, low-illumination, small and blurry face images. Researchers have
hypothesized that deeper layers of DCNNs can encode more abstract in-
formation such as identity, pose, and attributes; however, it has not yet
been thoroughly studied which layers exactly correspond to local features
for fiducial detection.

• Face identification/verification: For face identification/verification, the
performance can be improved by learning a discriminative distance mea-
sure. However, because of memory constraints limited by graphics cards,
how to choose informative pairs or triplets and train the network end to
end using online methods (e.g., stochastic gradient descent) on large-scale
data sets are still open problems.

2.6 Conclusion

The design and performance of our automatic face identification/verification
system was presented, which automatically detects faces, localizes fiducial
points, and performs identification/verification on newly released challenging
face verification data sets, IJB-A and its extended version, JANUS CS2. It
was shown that the proposed DCNN-based system can not only accurately
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locate the faces from images and video frames, but also learn a robust model
for face identification/verification. Experimental results demonstrate that the
performance of the proposed system on the IJB-A data set is comparable to
other state-of-the-art approaches and much better than COTS and GOTS
matchers.
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3.1 Introduction

In recent years, a great amount of research in the computer vision and pattern
recognition area has been dedicated to biometrics whose assumption is the
uniqueness of people’s identity. An important application of biometrics is the
problem of face identification. One of the applications, for instance, is whether
the designed system can recognize a pair of face images belonging to the same
person. Distinguishing between identical twins is classified as one of the most
difficult scenarios, which is reported to be complicated even for humans [1].

The major motives behind face identification lie in forensics applications,
specifically when other modalities (i.e., iris or fingerprint) are absent. Wrong
subject identification of identical twins has been reported as an important
security challenge, which may even cause financial issues [2]. As for other
modalities, matching of identical twins’ fingerprint has also been investi-
gated [3]. The task of face identification for identical twins usually yields
exceedingly poor results, as anticipated, because the two subjects are signifi-
cantly similar, and it is a daunting challenge to develop a concrete framework
to perform the job. The visual understanding of the difficulty of the identi-
cal twins recognition is depicted in Figure 3.1. All pairs belong to different
identities (i.e., identical twins).

FIGURE 3.1
Visual understanding of the complexity of distinguishing between identical
twins.
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Different studies have addressed this issue. Some researchers [2,4] use either
small data sets or their face-identification evaluations are based on using exist-
ing commercial matchers. In [4] provided a comprehensive study on comparing
matching algorithms and their performance for face-identification tasks. While
using available off-the-shelf algorithms, this study [4] is based on an extensive
data set. Nevertheless, it does not offer any new approach optimized to exploit
the twin-data characteristics. Some other works like [5] investigate facial fea-
tures for identical twins by implementing hand-crafted feature descriptors like
multiscale local binary patterns, Scale Invariant Feature Transform (SIFT),
and facial marks for local feature extraction. However, these feature descrip-
tors do not exploit the subtle characteristics of the twin data. So there is a
need to investigate a reliable framework for extracting features from the data
itself, which suggests the use of deep learning as an interesting solution for
extracting a common feature space, applicable to the characteristics of the
identical twins data set. So the general idea is to transform the input feature
space to another domain whose features allow distinction between identical
twins.

The availability of abundant data and a reliable structure are prerequisites
for deep learning. The recognition of identical twins is an example of the case
where there might be numerous subjects of twins with only a few of their image
pairs per subject available for training. Because in the twin-face identification
problem, the focus is image verification and not classification, there is a need
to develop new architectures to be trained only for distinguishing between
genuine and impostor pairs regardless of their identities. A genuine pair is a
pair of images in which the images belong to the same subject and an impostor
pair is otherwise.

The main idea in this chapter is to implement an architecture named
“Siamese Network” [6] for face verification of identical twins. The goal is to
learn a nonlinear mapping that understands a similarity metric from the data
itself for identifying the identical twins, which suggests a more data-driven
solution compared to the traditional facial-texture analysis methods. This
architecture can be learned on pairs of data and later used for distinguish-
ing between subjects that have never been seen in the training phase. Another
advantage is that because the similarity metric will be learned using this archi-
tecture, as long as there is enough training data (genuine and impostor pairs),
the number of training samples per subject does not affect the identification
performance, which is an interesting advantage.

Our approach is to implement and train a Siamese architecture using
two identical deep convolutional neural networks (CNNs) to find a nonlinear
mapping where in the mapped target subspace a simple distance metric
can be used for performing the face-verification task. So in the target sub-
space, the genuine pairs should be as close as possible and the impostor pairs
should be as far as possible using simple distance metrics (i.e., Euclidean
distance). Recent research in computer vision has demonstrated the superior
performance of deep models with global features compared to local features.
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Therefore, we have used the whole face as the input feature space (using global
features) rather than using different hand-crafted features or facial landmarks
for training the deep model.

The contributions of this work are as follows:

• Siamese architecture is used to find a nonlinear mapping to learn a ded-
icated similarity metric in a target subspace with a significant reduction
in dimension compared to the input space.

• A deep CNN model is trained using a large data set, Twin Days Festival
Collection (TDFC) to learn a nonlinear mapping function optimized for
distinguishing between identical twins. This model, which uses the Siamese
architecture to learn the similarity metric consists of two parallel identical
CNNs.

• The learned architecture and similarity metric are leveraged to distinguish
between the genuine and impostor pairs of data.

To the best of our knowledge, this is the first work using Siamese architecture
for distinguishing between the identical twins for the face-verification task.

3.2 Related Work

This section includes two subsections, Identical Twins Identification and
Siamese Networks, and treats these subjects separately and then addresses
a thorough comparison of our work with previous research works.

3.2.1 Identical twins identification

Various face-recognition works in this area [3,7,8] use a limited number of twin
siblings as a data set for their research works. The research was done in [3] is
merely based on fingerprint recognition. The work in [7] is dedicated to mea-
suring the discriminating ability of hybrid facial features by the statistical
separability between genuine and impostor feature distances. Use of demo-
graphic information∗ and facial marks† for face matching and retrieval has
been proposed in [8]. Comprehensive work has been done in [2] in which they
perform matching using face, iris, and fingerprint modalities in addition to
the fusion of the aforementioned modes. [2] concludes that for distinguishing
between identical twins, using face mode is a more complex task compared to
using fingerprint and iris modalities. Some other studies have been done for
different modalities including iris [9] and speech recognition [10]. Some other

∗Gender, ethnicity, age, etc.
†Scars, moles, freckles, etc.
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works [11,12] were done on the Twins Days data set for investigating the face
illumination and expression on identification of identical twins. Another more
comprehensive work [4] has been done (as the expansion of [11] and [12]),
which takes age progression and gender into consideration as well. All the
experiments performed in [4], [11], and [12] use off-the-shelf algorithms on the
twin data set for evaluation and do not develop any algorithm or architecture
for face identification. Using group classification and a facial-aging features
approach was proposed in [13] for recognizing identical twins.

3.2.2 Siamese architecture

As deep learning techniques have attracted a great deal of attention, a pow-
erful model is the Siamese architecture, which can be built by two identical
CNNs called the Siamese Convolutional Neural Networks (SCNNs). SCNNs
were proposed in Reference 14 as a framework for the face-verification task
and also in [15] as a dimensionality reduction framework. More recent work
has been done in [16], which shows robustness to geometry distortion. More-
over the designed architecture in [16] shows decent generalization ability by
using the same idea of contrastive loss function implementation for similar and
dissimilar pairs. In [17], an approach was proposed for person reidentification
in a multicamera setup implementing a hierarchical architecture with SCNNs.
However, a small-scale data set was used because of computational cost.

3.3 Our Twin Siamese Discriminative Model

The general model that we will use here is a simple distance-based model,
which is equivalent to the category of energy-based models proposed in [18].
The following subsections are dedicated to explanation of further details of
our proposed twin discriminative model.

3.3.1 Siamese architecture for distinguishing between
identical twins

The twin-discriminative model uses a Siamese architecture, which consists
of two identical CNNs. The goal is to create a target feature subspace for
discrimination between similar and dissimilar pairs based on a simple distance
metric. The model is depicted in Figure 3.2. The general idea is that when two
images belong to a genuine pair, their distance in the target feature subspace
should be as close as possible, and for impostor images, it should be as far as
possible. Let Xp1

and Xp2
be the pair of images as the inputs of the system

whether in training or testing mode. The distance between a pair of images in
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FIGURE 3.2
Siamese model framework.

the target subspace defined as DW (Xp1
, Xp2

), that is, the �2−norm between
two vectors, in which W is the parameters of the whole network (weights).
In a simpler way, DW (Xp1

, Xp2
) should be low for genuine pairs and high for

impostor pairs, which defines the contrastive loss function. Consider Y as the
label that is considered to be 1 if both images are genuine and 0 otherwise. F
is the network function that maps the input to the target feature subspace,
the outputs of the Siamese CNNs are denoted by FW (Xp1

) and FW (Xp2
), and

W is the same because both CNNs share the same weights. The distance is
computed as follows:

DW (Xp1
, Xp1

) = ||FW (Xp1
)− FW (Xp2

)||2 (3.1)

3.3.2 Contrastive loss

The goal of the loss function LW (X,Y ) is to minimize the loss in both scenarios
of encountering genuine and impostor pairs, so the definition should satisfy
both conditions as given by:

LW (X,Y ) =
1

N

N∑

i=1

LW (Yi, (Xp1
, Xp2

)i) (3.2)

where:

N is the number of training samples
i is the index of each sample,
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LW (Yi, (Xp1
, Xp2

)i) is defined as follows:

LW (Yi, (Xp1
, Xp2

)i) = Y ∗ Lgen(DW (Xp1
, Xp2

)i)

+ (1−Y ) ∗ Limp(DW (Xp1
, Xp2

)i) + λ||W ||2
(3.3)

in which the last term is for regularization, and λ is the regularization param-
eter. Finally Lgen and Limp are defined as the functions of DW (Xp1

, Xp2
) by

Equation 3.4:
{
Lgen(DW (Xp1

, Xp2
)) = 1

2DW (Xp1
, Xp2

)
2

Limp(DW (Xp1
, Xp2

)) = 1
2max{0, (M −DW (Xp1

, Xp2
))}2 (3.4)

where M is a margin, which is obtained by cross-validation. Moreover the
max argument declares that in case of an impostor pair if the distance in the
target feature subspace is larger than the threshold M , there would be no loss.

3.3.3 Siamese convolutional neural networks architecture

The Siamese architecture consists of two identical parallel CNNs as depicted
in Figure 3.3. When a pair of images (Xp1

, Xp2
) is fed as the input to the

network, splitting will be done in the net forward procedure in both training
and testing modes, and each of the Xp1

and Xp2
will be forwarded to one

of the two parallel CNNs as shown in Figure 3.3. Finally, the outputs of two
CNNs will be compared using a contrastive loss function for minimization
of the total loss. This procedure feeds images of genuine and impostor pairs
to the two identical CNNs structures to learn the similarity metric. In the
training phase, the network should learn the similarity of genuine pairs and
dissimilarity of the impostor pairs, which is reflected by the outputs CNNs.
In the testing phase, the similarity between the two images of any input pair
can be calculated based on the outputs of the two CNNs.

Pr
ep

ro
ce

ss
in

g

Co
nt

ra
sti

ve
 L

os
s

Convolution

Convolution Max Pooling

Max Pooling Convolution

x

Convolution

X

FIGURE 3.3
Twin discriminative model. The Siamese architecture: Two parallel identical
CNNs with parameter sharing.
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3.4 Evaluation and Verification Metric

In this chapter, we evaluate all the experimental results using the Receiver
Operating Characteristic (ROC) curve. The ROC curve consists of the
Validation Rate (VR) and False Acceptance Rate (FAR). Because in iden-
tical twins’ matching, the task is to determine whether the two persons are
the same subjects or not, the ROC curve comes to play as an illustration of
the binary classifier performance. A genuine pair (also referred to as match
pairs) is a pair of two images belonging to the same person and the impostor
pair (referred to as nonmatch pairs) is a pair of images belonging to identical
twins or two look-alike persons. All face pairs (XP1

, XP2
) of the same identity

are denoted with Pgen, whereas all pairs belonging to different identities are
denoted as Pimp. We define true positive and false acceptance as:

TP (thresh) = {(XP1
, (XP2

) ∈ Pgen, DW ≤ thresh} (3.5)

FA(thresh) = {(XP1
, (XP2

) ∈ Pimp, DW ≤ thresh} (3.6)

So TP (thresh) is the test samples, which classified as match pairs, whereas
FA(thresh) are nonmatch pairs, which incorrectly classified as match pairs.
Both the calculations are done using a single predefined threshold, which
the output distance will be compared with as a metric for prediction. The
validation rate, VAL(thresh), and, FAR(thresh), are calculated as:

V R(thresh) =
TP (thresh)

Pgen
, FAR(thresh) =

FA(thresh)

Pimp
(3.7)

The V R is the percentage of genuine pairs that are correctly classified as the
matching pairs. On the other hand, the FAR is the percentage of nonmatch
pairs (impostor pairs) that are incorrectly classified as images belonging to the
same subject. According to the definitions, FAR and V R can be computed
with regard to impostor and genuine pairs, respectively.

The main metric that has been used for performance evaluation is the
Equal Error Rate (EER), which is the point when FAR and False Rejection
Rate (FRR) are equal. Because the equality FRR = 1−V R always holds, the
EER is simply equal to FRR = 1−V R = FAR. So by drawing the EER line
using equation V R = 1−FAR on the ROC curve and finding the intersection
with the curve, the EER point can be calculated. For the verification, the
metric is simply a �2−norm calculation between the outputs of the two fully
connected layers from the two parallel CNNs and a final comparison with a
given threshold (predetermined margin). The ROC curve is plotted based on
using different thresholds and calculating the corresponding VR and FAR.
For having a better understanding of the performance, the test samples are
divided into five disjoint parts and the evaluation is done across the five splits.
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3.5 Experimental Setup

3.5.1 Data sets

Four data sets have been used in this work. One is a large data set, TDFC,
which is used for training and testing. The TDFC data set used in our
experiments was gathered from 2010 to 2015 and consists of 1357 distinc-
tive identities. The data set is restricted and provided by West Virginia
University. The twin images are taken with a high-resolution camera, Canon
5D Mark III DSLR, under controlled lighting conditions, and each image size
is 4288× 2848. During data collection, three cameras are used to capture the
face image under different viewing angles. In our experiments, we only use
the frontal view image for training and testing to alleviate the misalignment
problem.

CASIA-WebFace [19] and LFW [20] data sets are used for pretraining
the model. LFW is the de-facto test set for the face-verification task. Al-
though the CASIA data set is used to pretrain the network as classier and
the LFW data set is used to fine-tune the network in verification mode, both
are employed to supervise the verification task as the ultimate goal for twin
verification.

The fourth data set is The Look-alike face database [21] that consists of
color images pertaining to 50 well-known personalities from either western,
eastern, or Asian origin. Each image is size 220 × 187. For each subject, its
look-alike counterparts are gathered carefully to create the impostor pairs.
Each selected celebrity has five genuine images and five look-alike images.
These images are captured in the wild, which is similar to that of the LFW
data set, making it difficult to recognize because of an enormous registration
error. In addition, the small number of samples also prohibits most algorithms
from reaching a high verification rate. According to the aforementioned char-
acteristics of the Look-alike data set, it will be only used for fine-tuning our
pretrained Siamese network trained on twin data set and tested for perfor-
mance evaluation.

In real-field scenarios and in the case of face verification, it is impractical
to assume the expression of the subjects faces are the same in both images of
a pair. As an example, in forensics applications, we may have a natural face
in an image and one wants to compare this image to a query image in which
the subject has a smiling expression. So to make a more realistic scenario,
the pairs are generated in mixed order of smiling and natural expressions,
which downgrades the testing performance, but is prone to provide fairness in
experiments.

Another assumption is that there might not be any iris information in one
or both images of a pair. So the pair creation is based on the assumption of
closed eyes verses opened eyes of closed eyes versus closed eyes for a decent
portion of the testing and training pairs.
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3.5.2 Preprocessing

We have implemented several preprocessing techniques to improve the per-
formance of the proposed model. All face images in both TDFC and Look-
alike data sets are first cropped using Dlib C++ library [22] and transformed
to color images. Because of misalignment in the data set, we have used the
face-frontalization technique [23], also referred to as three-dimensional align-
ment, to adjust the face poses. The frontalized-face is able to largely improve
the network performance especially for the Look-alike data set, where the
face images are mostly captured in the uncontrolled wild environment. The
frontalized face images are then resized to 224× 224 as the standard input to
VGG-16 and VGG-19 architecture. The data can be normalized to the range
of [0, 1] using Equation 3.8:

Ii ←
[

Ii−min(I)

max(I)−min(I)

]

, (3.8)

where Ii is the ith pixel of the image I, and [·] is the rounding operator.
As the standard preprocessing procedure, each image can be subtracted from
the mean face image of the data set, which is usually used to reduce the
discrepancy between the distributions of training and testing sets. We did not
find it helpful regarding performance to normalize the data to the range of
[0, 1]. The range kept untouched as is in the range of [0, 255].

3.6 Experiments

The proposed experiments consist of three phases. At first, the VGGNet [24]
is used to pretrain the structure on the CASIA data set as a classifier to
supervise the learning of deep learning architecture. Then the network is fine-
tuned on the twin data set for evaluation of the accuracy and discrimination
ability of the proposed method.

All experiments presented here are implemented on a workstation with
three Nvidia Geforce Titan X GPUs. The Siamese architecture is trained and
evaluated using Caffe as the deep learning framework [25].

3.6.1 Pretraining the model

In generic object recognition or face classification, the categories of the pos-
sible samples are within the training set. Therefore, the existing labels deter-
mine the performance and softmax or any class-oriented loss would be able to
directly address the classification problems. In this manner, the label predic-
tor layer acts as a classifier and the learned features are separable as the loss
goes to zero. In face recognition, the learned features should be discriminative
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even if not be separable from class; it is not practical to assume all the sam-
ple categories in testing phase are available in the training. On the contrary,
the fair assumption is to assume the training and testing samples classes
are mutually exclusive as prompted in forensics application. The learned
data-driven features are required to be discriminative and generalized for being
able to recognize between unseen classes without category-related label pre-
diction. However, it is proven that discriminative power of features in both
the intra- and interclass variations can supervise the learning of deep learning
architecture in a more effective way [26].

As noted in [26], training as a classifier makes training significantly easier
and faster. Then in the next phase, the VGGNet will be fine-tuned on the LFW
data set using the Siamese architecture, which uses two identical VGGNet as
the CNNs. The reason behind doing the latter part is to supervise the dis-
criminative features without optimizing the class-separability characteristics.
As a technical problem, the learning rate for this fine-tuning must be set to a
small value for not disturbing the category separability. Then the fine-tuned
network will be used as an initialization for the twin-verification network.

It is worth recalling that in the first stage, which is training on the CASIA
data set, the layer SoftmaxWithLoss is used in Caffe implementation, which is
numerically more stable than using a cross-entropy loss followed by a softmax
operation. The reason is that of the presence of the log. If the output of
the network provides a bad prediction and by normalizing that prediction we
get zero for the y value, then the loss goes to infinity, and this is unstable.
Another issue can be the existence of the exponential in the softmax operator.
If the output of any of the neurons is large because in the softmax we do the
exponentiation, then the numerator and denominator of the softmax operation
can be quite large. So a trick can be adding a number to all of the unscaled
outputs.

Before fine-tuning the network on the twin data set, it is worth it to show
how good the performance is on the twin test set using only the weights
pretrained on the CASIA and LFW data sets. The results performing on
both LFW and twin test sets using the CASIA-LFW-Model are reported in
Table 3.1. It provides a visual understanding of the discriminative ability of
the pretrained model. The demonstrated results in Table 3.1 prove the ability
of the model in the task of discrimination of images collected in the wild as a
baseline.

TABLE 3.1
Using the pretrained model on CAISA and
LFW data sets for evaluation of the
performance on LFW test sets

Data set EER (μ ± σ) AUC (μ ± σ)

LFW 7.1% ± 0.005 98% ± 0.001



76 Deep Learning in Biometrics

TABLE 3.2
Twin verification solely by using the pretrained model on CASIA data set

Test year No. test subjects EER (%) (μ ± σ) AUC (%) (μ ± σ)

2010 159 13.37 ± 0.01 94 ± 0.009
2011 190 11.2 ± 0.016 95.1 ± 0.008
2012 243 14.8 ± 0.01 93 ± 0.004
2013 157 17.5 ± 0.014 90.8 ± 0.013
2014 256 15.5 ± 0.011 91.8 ± 0.011

It is good to have an idea of how good the pretrained model would work
on the twin test set without any fine-tuning on twin data set. The restricted
year refers to considering both images of a test pair belonging to the same
year. All the unique subjects presented in the year of X in range (2010−2014),
which are not present in any other year, will be used as the test set. Basically,
the test set completely separates the subjects that are present by year. The
results are shown in Table 3.2 in which the weights pretrained by CASIA are
used.

3.6.2 Twin verification

The experiments in this part are solely on the twin data set, which reflects
the accuracy on the challenging task of recognizing between identical twins.

The architecture used in this implementation is shown in Table 3.3, which
is VGG-16. Activation layers (rectified linear units) representation have been
eliminated for simplicity. It is worth mentioning that compared to the VGG
architecture, the last 1000-output layer is replaced by an X-output FC-layer,
which shows the level of compression that is mainly aimed to reduce the over-
fitting if X is chosen to be less than 1000. X has been chosen to be 500
as empirically proved to be the maximum threshold for feature compression
without downgrading the performance specifically for this architecture and
experimental setup. If the attribute “Trainable Parameter” is set to “False,”
the weights of the associated layer will be fixed, which are learned in training
on CASIA and LFW datasets. The attributes called “Trainable Parameter,”
and the margin,M , are chosen concurrently using cross-validation on five folds
of the data, which have been divided training set into five folds of disjoint
pairs. The margin M for the contrastive loss function is set to 1000 for all
experiments, which renders a plausible performance.

3.6.2.1 Twin verification with restricted year

This part in which the network is fine-tuned on the twin data set, consider the
year-separation effect. The restricted year refers to considering both images
of a test pair belonging to the same year. All the subjects presented in year of
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TABLE 3.3
Architecture used in twin-verification task

Filter Output Trainable
Name Type size/stride depth parameter

conv1 1 Convolution 3 × 3/1 64 True
conv1 2 Convolution 3 × 3/1 64 False
pool1 Pooling 2 × 2/2 64 —
conv2 1 Convolution 3 × 3/1 128 True
conv2 2 Convolution 3 × 3/1 128 False
pool2 Pooling 2 × 2/2 128 —
conv3 1 Convolution 3 × 3/1 256 True
conv3 2 Convolution 3 × 3/1 256 True
conv3 3 Convolution 3 × 3/1 256 False
pool3 Pooling 2 × 2/2 256 —
conv4 1 Convolution 3 × 3/1 512 True
conv4 2 Convolution 3 × 3/1 512 False
conv4 3 Convolution 3 × 3/1 512 False
pool4 Pooling 2 × 2/2 512 —
conv5 1 Convolution 3 × 3/1 512 True
conv5 2 Convolution 3 × 3/1 512 False
conv5 3 Convolution 3 × 3/1 512 False
pool5 Pooling 2 × 2/2 512 —
FC 1 InnerProduct 4096 False
FC 2 InnerProduct 4096 True
FC 3 InnerProduct X True

X, which uniquely belong to that year, and not any other year, will be used as
the test set, whereas the subjects who are presented in the other years, that
is, all the years in range (2010−2015) except for X, will be used for training.
X, can be varied in the range of (2010−2014) and the year of 2015 is not
considered for testing in this setup, which further investigation will be done
on that in combination with 2014 in subsequent experiments. Basically, the
test set is completely separated by the year that the subjects are present. Age
progression has not been considered in this setup because the testing year can
be in the middle of the training set range. A representation of the described
identity selection is demonstrated in the Venn diagram depicted in Figure 3.4.

The crucial thing is to make sure that the training and testing sets are
mutually exclusive; that is, none of the test identities are present in the
training phase. It is worth mentioning that this setup reduces the number
of training samples because the repeated subjects that are jointly present in
year X and any other year are not considered in the training set.

After fine-tuning the network using the twin data set, the outputs of the
FC 3 layer will be used for feature representations of images of each pair. Then
by using the Euclidean distance, the similarity score will be calculated in the
sense that if two images are closer by the distance metric, their similarity score
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FIGURE 3.4
The Venn diagram for identity splitting.

TABLE 3.4
Twin verification with restricted year

Test Train
subjects subjects EER (%) AUC (%)

Test year (pairs) (pairs) (μ ± σ) (μ ± σ)

2010 159(3522) 1198(102,768) 13.3% ± 0.013 94.6% ± 0.009
2011 190(1055) 1167(110,161) 9.5% ± 0.017 96% ± 0.011
2012 243(19,445) 1114(41,537) 10.9% ± 0.003 96.4% ± 0.002
2013 187(1878) 1170(98,745) 13.8% ± 0.018 93.2% ± 0.011
2014 131(2026) 1226(118,238) 9.4% ± 0.019 95.8% ± 0.010

is higher. In the end, by simply using the calculated scores and comparing them
by employing different thresholds, the ROC curve for the binary classification
task will be demonstrated. The results are shown in Table 3.4.

The base learning rate is set to be 10−8, and the step size of the learning
rate drop is initially set to 2000. The batch size is chosen to be 48, which is
the maximum that our hardware architecture can tolerate. Total iteration for
weights is limited by the moment that the test performance starts to decrease.
Each experiment depends on the number of training samples; the process of
the weights update continues for at least 10 epochs unless the test performance
starts to decrease. Technically, after this step we stop the update process and
save the model and then initialize the model again with the saved weights, but
start at a lower learning rate by a factor of 0.1. We also enforce an �2−norm
regularizer, also referred to as weight decay, on the network weights with a
regularization parameter set to 10−3.
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TABLE 3.5
Twin verification with age progression and unrestricted year

No. test No. train
Test year subjects subjects EER (μ ± σ) AUC (μ ± σ)

2014–2015 32 1024 13.4% ± 0.02 92.3% ± 0.015

3.6.2.2 Twin verification with age progression and
unrestricted year

This part considers the age-progression effect as the previous part. The unique
subjects, which are only present in the years between 2010–2013 and not any
other year, are used as the training set, whereas the subjects that are present
in both years of 2014 and 2015 and absent in years of 2010–2013 are used as
test subjects. The results are demonstrated in Table 3.5. In this experiment
both subjects in a pair are present in both years, but the images themselves
might be taken in different years.

3.6.2.3 Twin verification with age progression and
unrestricted year using merged subjects

In this experiment, the subjects that are present in any of the years of 2014
and 2015 and absent in the years of 2010–2013 are used as test subjects,
and the training set remains the same as the previous setting. The results are
demonstrated in Table 3.6. So the difference between this experiment with the
previous one is using merged identities; that is, in nonmatch pairs the subjects
are not necessarily present in both years, and for the match pairs, the identity
may appear in both years. A total number of 5144 pairs are generated and
evaluated as the test set in this setting.

To increase the variation of the test set, the test images are chosen from
the years of 2014 and 2015. This has some practical advantages. At first,
the effect of age progress is considered while testing on the unseen subjects
and moreover, it increases the number of test pairs, which provides a fair
experiment. Additionally, choosing the test images from different years has
specific forensics applications because one may realize if two images that are

TABLE 3.6
Twin verification with age progression and unrestricted year using
merged subjects

No. test No. train
Test year subjects subjects EER (μ ± σ) AUC (μ ± σ)

2014–2015 333 1024 12.64% ± 0.005 94.2% ± 0.007
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TABLE 3.7
Test on Look-alike data set using pretrained
model on twins

No. pairs EER (μ ± σ) AUC (μ ± σ)

1718 27.6% ± 0.02 79.1% ± 0.027

taken in different years belong to the same person. It is worth noting that in
this experiment, the number of test subjects and training subjects is the same
as the previous experiment.

3.6.3 Face verification with transfer learning on
Look-alike data set

In our last experiment, we evaluate the proposed model performance on the
Look-alike data set. Because the Look-alike data set suffers from the lack
of data samples, which approximately only contains a total number of 50
identities, we choose to pretrain the Siamese network with the whole TDFC
data set, and we evaluate the pretrained model using the Look-alike data set.

Before testing, the Look-alike data set, the images in the data set should be
aligned and resized to the standard size, 224 × 224. One of the problems with
using the Dlib face detector is that it misses some of the hard examples (e.g.,
partial occlusion, etc). This makes the data even smaller and hardly reliable
for evaluation. To solve this, other facial-landmark detectors have been used.
One facial-landmark detector that has empirically proven to perform well in
this setting is the Multi-task CNN [27], which has been used for aligning the
Look-alike data set.

For the Look-alike data set, we have gathered 1718 pairs for evaluation
of the model fine-tuned on twin data set. The performance on the Look-alike
data set is shown in Table 3.7 in which the EER achieves 28%.

It is worth noting that the EER does not achieve the best results gained
using the twin data set, which shows the difficulty of the transfer of the learn-
ing procedure in this challenging application. However, the results of this work
still beats the state-of-the-art results of [21] on the Look-alike data set.

3.7 Conclusion

This chapter proposed a discriminative model based on Siamese CNNs to be
implemented in the face-verification application. The proposed model was
trained to learn a discriminative similarity metric based on two identical
CNNs. Experimental results on TDFC and Look-alike data sets show plau-
sible performance, verifying the efficiency of the proposed framework. The
effects of age progression and identification splitting have been illustrated in
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performance evaluations by using two aforementioned databases. The perfor-
mance was not changed significantly by altering the dynamic range of years
used for training. The reason is that for the nonrestricted scenario, the num-
ber of subjects that have been repeated in different years is relatively low
because of the specific characteristics of the TDFC data set. By having the
same subjects in different years (different ages) for training, improvement in
the performance has been observed. Moreover, training on the TDFC data set
and fine-tuning on the Look-alike data set resulted in acceptable performance
for testing on that data set.
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4.1 Introduction

Facial key-point localization refers to detecting salient facial landmarks (e.g.,
eye corners, nose tip, etc.) on the human face. Multiple recently proposed pose-
robust face-recognition systems [1–3] rely on accurate landmark annotation,
which makes this problem important. Even though the boundaries of this
domain have been consistently pushing forward in the recent years, localizing
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landmarks under large head-pose variations and strong occlusions remains
challenging.

Current state-of-the-art approaches for facial key-point localization are
based on cascaded regression [4–7]. The intent of the algorithm is to
progressively minimize a difference ΔS between a predicted shape Ŝ and a
ground-truth shape S in an incremental manner. This approach contains T
stages, starting with an initial shape Ŝ0; the estimated shape Ŝt is gradually
refined as:

arg min
Rt,Ft

∑

i

||ΔSt
i − R

t(Ft(Ŝt−1
i , Ii))||22, (4.1)

Ŝt
i = Ŝt−1

i +ΔŜt−1
i , (4.2)

where i iterates overall training images. Ŝt
i is the estimated facial shape for

image Ii in stage t; usually Ŝt
i can be represented as a 2L × 1 vector. L is

the number of facial key points. Ft(Ŝt−1
i , Ii) is a mapping from image space

to feature space. Because the obtained features are partially determined by
Ŝt−1
i , these features are called “shape-indexed features.” R

t(·) is a learned
mapping from feature space to target parameter space. In deep cascaded re-
gression [4,7–9], Ft(·) can be used to denote all operations before the last fully
connected layer. Rt(·) represents the operations in the last fully connected
layer whose input is an arbitrary dimensions feature vector φt

i, and output is
the target parameter space.

Although cascaded regression is a useful framework for face alignment, sev-
eral challenges need to be addressed when deriving a deep architecture. First,
current deep cascaded regression is greedily optimized per each stage. The
learned mapping R

t is not end-to-end optimal with respect to global-shape
increment. When training a new mapping Rt for stage t, fixing the network pa-
rameters of previous stages leads to a stage-wise suboptimal solution. Different
from cascaded face detection that can be easily formulated into a globally op-
timal structure [11], gradients that back-propagate from the later stages of the
network are blocked because of reinitialization of shape parameters between
stages. The second challenge arises from shape-indexed features: Ft(Ŝt−1

i , Ii).
Shape-indexed features are extracted based on landmark locations [5,6]. How-
ever, how to effectively merge the information encoded in one-dimensional
coordinate vectors into a two-dimensional (2D) image in an optimal way still
remains an open problem. Even though some heuristic solutions (e.g., con-
catenating a three-dimensional (3D) geometric map with RGB channels [7]
or highlighting pixel blocks [12]) alleviate the problem partially, the solu-
tion is not optimal from a gradient back-propagation perspective because
the pixel values in the newly generated maps are assigned based on exter-
nal parameters. The third challenge comes from information flow in deep
architectures. The deep representation generated at the bottom layer φt

i,
although highly discriminative and robust for object/face representation, loses
too much spatial resolution after many pooling and convolutional layers. As a
result, it cannot tackle pixel-level localization/classification tasks very well.
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This phenomenon was recently named in the image segmentation field as
spatial-semantic uncertainty [13]. Because in most deep regressions [4,7–9,14],
where R

t solely relies on φt
i, precision of Ŝt

i may suffer from this structural
limitation of deep networks.

To tackle the aforementioned challenges in deep cascaded regression
models, we propose a globally optimized dual-pathway (GoDP) architecture
where all inferences are conducted on 2D score maps to facilitate gradient
back-propagation (Figure 4.1). Because there are very few landmark locations
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FIGURE 4.1
Score maps generated from different variations of DeconvNet. Pixels in the
score maps indicate probabilities of visible facial key points. (a) Original im-
age, (b) ground-truth mask, (c) DeconvNet [10], and (d) GoDP. We rank the
pixel values in each score map and plot as the curve line in dark gray color
underneath. The vertical lines in light gray color indicate the pixel values in
the key-point candidate positions (3 × 3 white patches plotted in b). This
comparison shows that the score map generated from GoDP is clear and dis-
criminative.
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activated on the 2D score maps, a distance-aware softmax function (DSL)
that reduces the false alarms in the 2D score maps is proposed. To solve the
spatial-semantic uncertainty problem of deep architecture, a dual-pathway
model where shallow and deep layers of the network are jointly forced to max-
imize the possibility of highly specific candidate regions is proposed. As a
result, our facial key-points localization model achieved state-of-the-art per-
formance on multiple challenging databases. The key contributions of our work
include:

• An off-the-shelf deep network that is able to generate high-quality 2D score
maps for key-points localization.

• A new loss function designed for reducing false alarms in the 2D score
maps.

• A heavily supervised proposal-refinement (PR) architecture to discrimi-
natively extract spatial-semantic information from the deep network.

The rest of this chapter is organized as follows: In Section 4.2, we present the
related work in deep cascaded regression and discuss the limitations of this
method, and in Section 4.3, we introduce our proposed deep architecture and
three critical components of this architecture, and in Section 4.4, we evaluate
the proposed method in multiple challenging databases, and in Section 4.5,
we present our conclusions.

4.2 Related Work

Most of the deep architectures used for face alignment are extended from the
framework of cascaded regression. Sun et al. [8] first employed an AlexNet-
like architecture to localize five fiducial points on faces. Later, Zhang et al.
[9] invented a multitask framework demonstrating that a more robust land-
mark detector can be built through joint learning with correlated auxiliary
tasks, such as head pose and facial expression, which outperformed several
shallow architectures [15–18]. To conquer facial alignment problems under
arbitrary head poses, Zhu et al. [6] and Jourabloo and Liu [4] employed a
deformable 3D model to jointly estimate facial poses and shape coefficients
online. These deep cascaded regression methods suppress multiple state-of-
the-art shallow structures [19–21] and achieved remarkable performance on
less-controlled databases such as AFLW [22] and AFW [23]. A common point
of the previous architectures is that they require model reinitalization when
switching stages. As a result, the parameters of each stage are optimized from
a greedy stage-wise perspective, which is inefficient and suboptimal. Inspired
by recent works [12,24,25] in human-pose estimation and face alignment, we
employ 2D score maps as the targets for inference. This modification enables



Tackling the Weaknesses of Deep Cascaded Regression 89

gradients back-propagation between stages, allows 2D feedback loops, and
hence delivers an end-to-end model.

One fundamental challenge when employing 2D score maps for key-point
localization is spatial-semantic uncertainty, which is critical, but has not been
the focus of previous works on face alignment. Ghiasi and Fowlkes [13] pointed
out that features generated from the bottom layers of deep networks, although
encoding semantic information that is robust to image and human-identity
variations, lack spatial resolution for tasks requiring pixel-level precision (e.g.,
image segmentation, key-points localization). As a result, Ghiasi and Fowlkes
[13] proposed a Laplacian pyramid-like architecture that gradually refines the
2D score maps generated by the bottom layers through adding back features
generated from top layers, which contain more spatial information. Motivated
by similar observations, Newell et al. [26] proposed a heavily stacked struc-
ture by intensively aggregating shallow and deep convolutional layers to ob-
tain better score map predictions. In our work, we build a more intuitive and
tractable model without resorting to a stacked architecture. Because our net-
work leads to a better spatial-semantic trade-off, we achieve state-of-the-art
performance on facial key-point localization. Note that our architecture can
be employed in any applications that require high precision in localization
(e.g., human-pose estimation, object localization). Recently proposed hybrid
inference methods (e.g., convolutional neural network (CNN)-based recurrent
network [12], CNN-based conditional random field [27], and CNN-based de-
formable parts model [28]) can also be built on the high-quality score map
generated by GoDP architecture.

4.3 Method

In this section, we first introduce three components of the proposed architec-
ture. They are the basic elements that help us address multiple challenges in
2D score map-based inference. Then, we introduce our GoDP architecture.

4.3.1 Optimized progressive refinement

Because of optimization problems in traditional deep cascaded architecture,
a global-optimization model is highly needed. However, the main difficulty
in converting a cascaded regression approach into a globally optimized ar-
chitecture is to back-propagate gradients between stages, where shape was
usually used before to initialize new cascaded stages. In our work, we bypass
the problem by representing landmark locations Ŝt

i through 2D score maps
Ψ (we omit the index i for clarity), where information of landmark positions
is summarized into probability values that indicate the likelihood of the exis-
tence of landmarks. In our work, Ψ denotes (KL+1)×W ×H score maps in
stage t, where L is the number of landmarks, K is the number of subspaces
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(which will be introduced later), W and H are the width and height of the
score maps. The extra (KL+ 1)th channel indicates the likelihood that a
pixel belongs to background. Through this representation, gradients can pass
through the score maps and be back-propagated from the latest stages of the
cascaded model. Another insight of employing 2D probabilistic score maps is
these outputs can be aggregated and summarized with convolutional features
and create feedback loops, which can be represented as follows:

Ψ0 = F
0
o(I), (4.3)

F
t−1
b (I,Ψt−1) = F

t−1
a (I) �Ψt−1, (4.4)

ΔΨt−1 = F
t−1
c (Ft−1

b (I,Ψt−1)), (4.5)

Ψ = Ψt−1 +ΔΨt−1, (4.6)

where � denotes a layerwise concatenation in CNNs, F
0
o(I) represents the

first Ψ0 generated from I after passing through several layers in CNN,
and F

t−1
a (·), Ft−1

b (·), and F
t−1
c (·) indicate different network operations with

different parameter settings. Through the feedback loops, score maps gen-
erated by each stage can be directly concatenated with other convolutional
layers through Equation 4.4, which behaves as a shape-indexed feature. In
contrast to Zhu et al. [7] and Peng et al. [12], where score maps employed in
the feedback loops are determined and synthesized through external param-
eters, in our architecture, Ψt−1 in Equation 4.4 is fully determined by the
parameters inside the network based on Equations 4.5 and 4.6. Therefore, our
face alignment model can be optimized globally.

4.3.2 3D pose-aware score map

Unlike recent works that employ a deformable shape model [4,6], our model
implicitly encodes 3D constraints to model complex appearance-shape depen-
dencies on the human face across pose variations. We found that pose is a
relative concept whose actual value is susceptible to sampling region, facial
expressions, and other factors. As a result, it is difficult to learn an accu-
rate and reliable mapping from image to the pose parameters without consid-
ering fiducial-points correspondence. Instead of estimating pose parameters
[4,6,19,29] explicitly, we regard pose as a general domain index that encodes
multimodality variations of facial appearance. Specifically, we used K score
maps to indicate each landmark location, where K corresponds to the num-
ber of partitions of head pose. For each image, one out of K score maps is
activated for each landmark. In this way, the network automatically encodes
contextual information between the appearance of landmarks under different
poses. At the final stage, the K score maps are merged into one score map
through element-wise summation. In our implementation, K is equal to 3, and
the subspace partition is determined by yaw variations.
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4.3.3 DSL

Softmax loss function has been widely used in solving pixel-labeling problems
in human-joint localization [25,30], image segmentation [10,13], and recently,
facial key-point annotation [12]. One limitation of using softmax for key-point
localization is that the function treats pixel labeling as an independent classi-
fication problem, which does not take into account the distance between the
labeling pixel and the ground-truth key points. As a result, the loss function
will assign equal penalty to the regions that lie very close to a key point and
also the regions on the border of an image, which should not be classified
as landmark candidates. Another drawback of this loss function is that it
assigns equal weights to negative and positive samples, which may lead the
network to converge into a local minimum, where every pixel is marked as
background. This is a feasible solution from an energy perspective because
the active pixels in the score maps are so sparse (only one pixel is marked as
key-point per score map in maximum) that their weights play a small role in
the loss function compared to the background pixels. To solve these problems,
we modified the original loss function as follows. First, we assign larger cost
when the network classifies a key-point pixel into background class; this helps
the model stay away from local minima. Second, we assign different cost to the
labeled pixels according to the distance between the labeled pixels and other
key points, which makes the model aware of distances. This loss function can
be formulated as follows:

∑

x

∑

y

m(x, y)w
∑

k

tk(x, y)log

(
eψk(x,y)

∑
k′ eψk′ (x,y)

)

, (4.7)

w =

{
α, k ∈ {1 : KL} (4.8)

βlog(d((x, y), (x′, y′)) + 1), k = KL+ 1, (4.9)

where (x, y) are locations, k ∈ {1 : KL+1} is the index of classes, ψk(x, y) is
the pixel value at (x, y) in the kth score map of Ψ, tk(x, y) = 1 if (x, y) belongs
to class k, and 0 otherwise. The binary mask m(x, y) is used to balance the
amount of key-point and background pixels employed in training. The weight
w controls the penalty of foreground and background pixels. For a foreground
pixel, we assign a constant weight α to w, whose penalty is substantially
larger than nearby background pixels. For a background pixel, the distance
d((x, y), (x′, y′)) between the current pixel (x, y) and a key point (x′, y′) whose
probability ranked the highest among the KL classes is taken into account.
The result is that the loss function assigns the weights based on the distance
between the current pixel and the most misleading foreground pixel among the
score maps, which punishes false alarms adaptively. In Equation 4.9, we used a
log function (base 10) to transform the distance into a weight and employed a
constant β to control the magnitude of the cost. The shape of w is depicted in
Figure 4.2. As a result, discrimination between the background and foreground
pixels is encouraged according to the distance between a labeled pixel and a
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FIGURE 4.2
The shapes of the distance-aware softmax loss (DSL) employed in the decision
pathway. The transformations of the functions after increasing the values of β
are visualized through the dashed lines. The straight light gray-colored lines
indicate the cost of missclassifying a key-point pixel to a background pixel,
whereas the dark gray lines indicate the cost of missclassifying a background
pixel to a key-point pixel. (L) DSL for proposal, (R) DSL for refinement.

specific key point. From a point of view of optimization, in back-propagation,
because d((x, y), (x′, y′)) is independent from ψk(x, y), w will be a constant
that can be directly computed through Equation 4.8 or 4.9.

When training the network, we first replace Equation 4.9 with a constant
term (represented as β, which is less than α) and train the network with this
degraded DSL (represented as SL in Figure 4.3) for the first six epochs. Then,
Equation 4.9 is employed for further refinement. During training, inspired by
curriculum learning [31], we gradually increase the value of β and encourage
the network to discriminate pixels closer to the key-point locations.
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4.3.4 Proposal and refinement in dual pathway

To better exploit the spatial and semantic information encoded in a deep
network, we propose a dual-pathway architecture as shown in Figure 4.3.
Derived from DeconvNet [10], the unique design of the proposed architecture
includes separate pathways used for generating discriminative features and
making decisions. We designate them as “information pathway” and “deci-
sion pathway.” In the decision pathway, the depth of each layer is strictly
kept as KL+1 where each channel corresponds to a score map ψk. In the in-
formation pathway, depths of layers are unconstrained to enrich task-relevant
information.

4.3.4.1 Features in the information pathway

The design of the information pathway is built on the findings that feature
maps generated from the deep layers of the network contain robust informa-
tion that is invariant to the changing of image conditions, but lack enough
resolution to encode exact key-point locations. Although the feature maps of
shallow layers contain enough spatial information to localize the exact position
of each key point, they also contain a large amount of irrelevant noise. To han-
dle this dilemma, we build a structure such that the features extracted from
shallow layers are used to propose candidate regions, while the features ex-
tracted from deep layers help to filter out false alarms and provide structural
constraints. This is accomplished by imposing different losses to supervise
shallow- and deep-level features generated from shallow and deep layers. We
adjust the parameters of DSL in the decision pathway and enforce a large
penalty when the shallow-level features fail to assign large positive probabil-
ities to key-point locations, but give a smaller cost when they misidentify a
background into a key-point candidate. This is a high detection-rate policy to
supervise shallow-level features. In contrast, we adopt a low false-alarm pol-
icy to supervise deep-level features: we enforce high penalty when deep-level
features misidentity a background pixel as key point, but slightly tolerate the
error in the other way around. The results are shown in Figure 4.3. After
each shallow-level proposal, the contrast between background and foreground
is increased, whereas, after each deep-level refinement, the background noise
is suppressed. As a result, the key-point regions are gradually shrunk and
highlighted.

4.3.4.2 Score maps in the decision pathway

In the decision pathway, Ψ0 is first initialized with the output of the second
deconvolution layers, where high-level information is well-preserved. Then, the
probabilistic corrections ΔΨt−1 generated from the shallow-level and deep-
level layers of the network are computed and added to the decision pathway
with the supervision of multiple DSLs.
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FIGURE 4.3
The architecture of the proposed globally optimized dual-pathway (GoDP)
model. Based on a naive DeconvNet [10], we derive a precise key-point detector
by discriminatively extracting spatial and semantic information from shallow
and deep layers of the network. (Continued)
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As shown in Figure 4.3, during inference, score maps are first initialized
on the decision pathway through Equation 4.3, and then concatenated with
the layers in the information pathway through Equation 4.4. These newly
formed features are processed and aggregated into the decision pathway using
Equation 4.5, and the score maps in the decision pathway are updated by
Equation 4.6. The same process repeats several times to generate the final
score maps. The intention of this architecture is identical to cascaded regres-
sion, where in each stage, features are generated and contribute to reduce
residual errors between predicted key-point locations and ground-truth loca-
tions. The predicted locations then get updated and are used to reinitialize a
new stage. The difference is our 2D inference model fully exploits the informa-
tion encoded in a single network instead of resorting to a stacked architecture.

4.3.4.3 Network structure

In Figure 4.3, we employed a standard DeconvNet architecture containing 10
groups of layers (G1, G2, G3, G4, G5, G6, G7, G8, G9, G10) as feature source.
Each group contains two or three convolutional/deconvolutional layers, batch
normalization layers, and one pooling/unpooling layer. We added a hyperlink
to connect G4 and G8 to avoid information bottleneck. The decision pathway
is derived from the layer of G8, before unpooling. Bilinear upsampling layers
are denoted as U1 and U2. Loss layer SL represents a degraded DSL (intro-
duced in Section 4.3.3, represented as SL). We use P-DSL to represent DSL
used for supervising key-point candidate proposal. We use R-DSL to repre-
sent DSL used for supervising candidate refinement. Shapes of these DSLs are
plotted in Figure 4.2. The layers G12, G13, G14, G15, and G16 are additional
groups of layers used to convert feature maps from information pathway to
score maps in the decision pathway. The layers G12 and G13 contain three
convolutional and two batch normalization layers. The layers G14, G15, and
G16 include one convolutional layer. The settings of convolutional layers in
G12 and G13 are the same: width 3, height 3, stride 1, pad 1 except the con-
verters (last layer of G12 and G13), which connect the information pathway
and the decision pathway, whose kernel size is 1 × 1. The other converters
G14, G15, and G16 have the same kernel size: 1× 1.

FIGURE 4.3 (Continued)
The framework is motivated by cascaded regression, which contains residual
error corrections and error feedback loops. Moreover, GoDP is end-to-end
trainable, fully convolutional, and optimized from a pixel-labeling perspec-
tive instead of traditional regression. Under the architecture, we visualize the
(KL+1)th score map sampled through the network, which indicates the prob-
ability of key-point locations. The letter and number below each score map
indicate the corresponding position in the network architecture. We highlight
background regions with light-gray colored circles to indicate how the proposal
and refinement technique deal with background noises.
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4.4 Experiments

In our experiments, we train the network from scratch. For each score map,
there is only one pixel at most that is marked as key-point pixel (depending
on the visibility of the key point). We employ different sampling ratios for the
background pixels that are nearby or further from the key point. The threshold
for differentiating nearby and far-away is measured by pixel distance on the
score maps. In this chapter, we employ three pixels as the threshold. At the
beginning, the network is trained with features generated from shallow-level
layers only, which means the network has three loss functions instead of five
in the first three epochs. After training the network for three epochs, we fine-
tune the network with all five loss functions for another three epochs. In these
six epochs, we employ a degraded DSL (SL) as explained in Section 4.3.2,
then DSL is used and the whole architecture is as shown in Figure 4.3. The
learning rate is gradually reduced from 10−3 to 10−7 during the whole training
process. We employ the stochastic gradient descent (SGD) method to train
the network. The input size of the network is 160 × 160 (gray scale) and the
output size of the score map is 80×80. It takes 3 days to train on one NVIDIA
Titan X. The detailed parameter settings in training are shown in Tables 4.1
through 4.5.

TABLE 4.1
Parameters of SL

Sampling Sampling
ratio: ratio:

Far-away Nearby Value Value Type

Stage pixels pixels of α β of loss Epoch

1 0.005 0.1 1 0.2 SL 3
2 0.005 0.1 1 0.2 SL 3
3 0.005 0.1 1 0.2 SL 3

TABLE 4.2
Parameters of P-DSL1

Sampling Sampling
ratio: ratio:

Far-away Nearby Value Value Type
Stage pixels pixels of α β of loss Epoch

1 0.005 0.1 1 0.2 SL 3
2 0.001 0.2 3 0.1 SL 3
3 0.001 0.15 3 0.6 DSL 3
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TABLE 4.3
Parameters of R-DSL1

Sampling Sampling
ratio: ratio:

Far-away Nearby Value Value Type

Stage pixels pixels of α β of loss Epoch

1 — — — — — —
2 0.01 0.05 1 0.3 SL 3
3 0.01 0.05 1.5 1 DSL 3

TABLE 4.4
Parameters of P-DSL2

Sampling Sampling
ratio: ratio:

Far-away Nearby Value Value Type

Stage pixels pixels of α β of loss Epoch

1 0.005 0.1 1 0.2 SL 3
2 0.001 0.2 3 0.1 SL 3
3 0.001 0.15 3 0.6 DSL 3

TABLE 4.5
Parameters of R-DSL2

Sampling Sampling
ratio: ratio:

Far-away Nearby Value Value Type

Stage pixels pixels of α β of loss Epoch

1 — — — — — —
2 0.01 0.05 1 0.3 SL 3
3 0.01 0.05 1.5 1 DSL 3

4.4.1 Databases and baselines

Three highly challenging databases are employed for evaluation: AFLW [22],
AFW [23], and UHDB31 [32]. The detailed experimental settings are sum-
marized in Table 4.6. We strictly follow the training and testing protocol
as in Zhu et al. [6] and conduct our experiment on AFLW-PIFA (3901 im-
ages for training, 1299 images for testing, 21 landmarks annotated in each
image) and ALFW-Full (20,000 training, 4,386 testing, 19 landmarks anno-
tated in each image). We note the models trained on AFLW-PIFA as M1
and the models trained on AFLW-Full as M2. For evaluating on the AFW
database (468 images for testing six landmarks annotated in each image),
M2 is used. We picked six estimated landmarks out of 19 to report the per-
formance. To evaluate the accuracy of algorithms under frontal faces, M2 is
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also employed. Different from Zhu et al. [6], all 1314 images out of 4386 in
the AFLW-Full database with 19 visible landmarks are considered as frontal
faces and used for testing. Results are shown in Table 4.10 under the label
AFLW-F. The database UHDB31 is a lab-environment database, which con-
tains 1617 images, 77 subjects, and 12 annotated landmarks for each image.
This is a challenging database, including 21 head poses, combining seven yaw
variations: [−90◦:+30◦:90◦] and three pitch variations: [−30◦:+30◦:30◦]. We
employed 9 landmarks (ID: 7,9,10,12,14, 15,16, 18,20 in Kostinger et al. [22])
to compute landmark errors. Model M2 is employed for evaluating.

Multiple state-of-the-art methods (CDM [18], RCPR [15], CFSS [21],
ERT [33], SDM [17], LBF [20], PO-CR [5], CCL [6], HF [14], PAWF [4],
and 3DDFA [7]) are selected as baselines. In our implementation, Hyperface
(HF) is trained without the loss of gender. The network architecture remains
the same. The performance of 3DDFA and PAWF are reported based on
the code provided by their authors. We employed normalized mean error
(NME) to measure the performance of algorithms as in Zhu et al. [6]. Same
as Zhu et al. [6], the bounding box defined by AFLW is used to normalize
the mean error of landmarks and initialize the algorithm. When the AFLW
bounding box is not available (e.g., on UHDB31 and AFW database) or not
rectangle (AFLW-PIFA), we use the bounding-box generator provided by the
authors of AFLW to generate a new bounding box based on the visible land-
marks. For the AFLW-PIFA database, after we generate new bounding boxes,
we enlarge them by 15% to guarantee the ears are included, while the NME
is computed using the original size of the bounding boxes.

4.4.2 Architecture analysis and ablation study

Along with the development of the deep network, the network structures
become complex, which might make the functionality of individual modules
unclear to the reader. To evaluate the capabilities of various networks for gen-
erating discriminative score maps, we analyzed new connections/structures of
recent architectures on the DeconvNet platform [10] to control uncertainty.
The hourglass network (HGN) [26] is a recent extension of DeconvNet. The
core contribution of hourglass net is that it aggregates features from shallow to
deep layers through hyperconnections, which blends the spatial and semantic
information for discriminative localization. Different from our supervised pro-
posal and refinement architecture, the information fusion of HGN is conducted
in an unsupervised manner. Our implementation of hourglass net is based on
DeconvNet, we add three hyperlinks to connect shallow and deep layers but re-
move residual connections [34]. This model is selected to be our baseline. The
detailed network settings for our implementation can be viewed in Figure 4.4.

In this experiment, we first employ a landmark mask to separate fore-
ground and background pixels as shown in Figure 4.1. Then we compute the
mean probability of foreground and background pixels based on the mask. We
average the mean probability over all the testing images on the PIFA-AFLW
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FIGURE 4.4
Network settings: (T) DeconvNet, (B) DeconvNet with hourglass [26]
connections.

database and obtain the numbers in Table 4.7. We observed that GoDP
performs significantly better in discriminating foreground and background
pixels than other structures and has a smaller landmark detection error. We
also evaluated our architecture without DSL (DSL in Table 4.7) and another
architecture without both DSL and PR architecture (degraded DSL every-
where with the same parameters). The result is as shown in Table 4.7 with
the name GoDP-DSL-PR. Table 4.7 shows that DSL is critical for training
a highly discriminative key-point detector and also contributes to regularize
our PR architecture. Additionally, we observe that the hyperlinks introduced
in hourglass net suppress background noise in DeconvNet.

In the next experiment, we trained GoDP to detect occluded landmarks.
In stage 3, we used the coordinates of all landmarks as the ground truth of
the last two DSLs (previous DSL/SL are trained with visible landmarks),
fine-turned from stage 2, and trained the whole network for three epochs. The
results are shown in Table 4.7 with the name GoDP(A). To compare with
HGN, we trained the HGN to detect occluded landmarks, the result is as
shown as HGN(A). We observe that GoDP(A) can better detect both visible
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TABLE 4.7
Performance on PIFA-AFLW database

Method MPK MPB NME-Vis NME-All

DeconvNet [10] 51.83 4.50 4.13 8.36
HGN [26] 28.38 0.96 3.04 11.05
GoDP−DSL−PR 31.79 1.01 3.35 13.30
GoDP−DSL 26.15 0.86 3.87 13.20
GoDP 39.78 1.30 2.94 11.17
GoDP(A)−DSL 99.37 99.92 3.37 5.75
HGN(A) 48.42 14.19 3.08 5.04
GoDP(A) 47.59 6.74 2.86 4.61

Note: MPB (%), mean probability of background pixels (small is better); MPK (%), mean
probability of key-point candidate pixels (large is better); NME-Vis, NME (%) of visible
landmarks; NME, represents NME (%) of all 21 landmarks.

and invisible (all) landmarks if we train the network in this manner. Since
then, we use GoDP(A) in the following experiments for comparison.

4.4.3 Performance on challenging databases

We compared GoDP(A) with state-of-the-art cascaded-regression based key-
point detectors. Because we strictly follow the experimental protocol as in
Zhu et al. [6], we directly cite their numbers in Table 4.8. GoDP(A) the low-
est NME in all comparisons: Tables 4.8 through 4.10, and Figure 4.5. Table 4.9
indicates we obtain impressive results on both frontal and profile faces, which
demonstrates GoDP is a highly accurate deep network–based detector. A qual-
itative comparison can be found in Figure 4.6. However, as shown in Figure
4.5(R), GoDP is a discriminative model and its performance is not as con-
sistent as 3DDFA in terms of detecting both visible and invisible landmarks.
This trade-off between detection accuracy and shape rationality requires more
exploration in future work.

4.4.3.1 Robustness evaluation

To further review the properties of GoDP, we compared robustness of
GoDP(A) and HF (regression-based method) under different bounding-box
initializations. This is important because bounding boxes generated by real-
face detectors always vary in size and position. We artificially add Gaussian
noise to the provided bounding boxes of AFLW-Full. The noise is generated
based on the size of bounding boxes, where σ controls the intensity of the
Gaussian noise. The noise is added based on the size and location of bounding
boxes, and the results are as shown in Figure 4.7, which discloses GoDP is
more robust to variations of bounding-box sizes, but sensitive to translation
errors.

One explanation of why GoDP is more robust to variations of bounding-
box sizes, but sensitive to translation errors is that because GoDP is a
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TABLE 4.9
Performance of GoDP(A)/HF on 21 views of UHDB31

30◦ 2.0/5.2 2.1/4.9 1.8/5.8 1.6/4.2 1.8/5.5 2.1/5.2 1.8/5.3
0◦ 1.8/3.6 1.8/3.0 1.8/3.2 1.2/2.2 1.5/3.0 1.7/3.3 1.7/3.7

−30◦ 2.7/5.3 2.1/5.3 1.8/4.3 1.6/3.3 1.6/3.8 2.1/5.0 2.4/6.0
−90◦ −60◦ −30◦ 0◦ 30◦ 60◦ 90◦

Note: NME (%) of visible landmarks is reported. Columns correspond to pitch variations,
rows correspond to yaw variations.

TABLE 4.10
NME (%) of visible landmarks

Deep cascaded R. Deep end-to-end

Evaluation PAWF 3DDFA HF GoDP(A)

AFLW-PIFA 4.04 5.42 — 2.86
AFLW-Full — 4.52 3.60 1.64
AFLW-F — 4.13 2.98 1.48
AFW 4.13 3.41 3.74 2.12

1

0.5
0.6
0.7
0.8
0.9

0.4
0.3
0.2
0.1

Fr
ac

tio
n 

of
 te

sti
ng

 im
ag

es

0
0 0.02 0.04 0.06

3DDFA-vis

HF-vis
HF-all
GoDP(A)-vis
GoDP(A)-all

HF-vis
HF-all
GoDP(A)-vis
GoDP(A)-all

3DDFA-all

3DDFA-vis
3DDFA-all
PAWF-vis
PAWF-all

0.08 0.1

1

0.5
0.6
0.7
0.8
0.9

0.4
0.3
0.2
0.1

Fr
ac

tio
n 

of
 te

sti
ng

 im
ag

es

0
0 0.02 0.04 0.06 0.08 0.1

NME NME

FIGURE 4.5
NME (%) increasing on all 19 landmarks of AFLW-Full database 4386 images
under noised bounding-box initializations. The σ is measured in percentage.
(L) GoDP(A), (R) Hyperface.

detection-based method, it is unable to predict any key points outside
the response region, but regression-based methods can. One solution to
compensate for this limitation in the future is through randomly initializ-
ing multiple bounding boxes as in Kazemi and Sullivan [33] and predicting
landmark locations using median values.
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FIGURE 4.6
The CED of deep learning-based methods. vis/all, the error of visible/all
landmarks. (L) AFLW-Full: 4386 images, (R) UHDB31: 1617 images.
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FIGURE 4.7
Qualitative results onAFLW-Full database. (T)Hyperface [14],
(M) 3DDFA [7], (B) GoDP(A) with score maps.

4.5 Conclusion

We propose an efficient deep architecture that is able to localize facial key
points precisely. The architecture transforms the traditional regression prob-
lem into a 2D-detection problem. We designed a new loss function and a
unique proposal-refinement technique to deal with the challenges that come
up with this new problem and thereby successfully tackle the optimization
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and precision weakness of deep-cascaded regression. In the future, we will ex-
plore how to embed the global-shape constraints into the neural network to
regularize the estimation.
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5.1 Introduction

Person reidentification aims to match the pedestrian images of the same
identity from disjoint camera views. The major challenges come from the
large intraclass variations in poses, lightening, occlusion, and camera views
in the pedestrian data. The conventional framework of person reidentifica-
tion generally includes two parts, feature extraction and similarity learning.
Feature extraction is to extract hand-crafted features from pedestrian images.
Similarity learning is to learn appropriate similarity or distance metrics from
pairs of pedestrian samples. These sorts of approaches are usually referred to
as traditional methods. Some of them focus on the first part, that is, feature
computation for pedestrian image [1,2], whereas some others attempt to im-
prove the second part, metric learning for reidentification [3–10] or to improve
both parts together [11–14].

109
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In recent years, the training data of person reidentification has increased
steadily [15,16], and the computational resources have been greatly improved
by GPU implementations [17,18] and distributed computing clusters [19]. As
a result of these promotions, an increasing number of deep learning–based ap-
proaches are proposed for person reidentification. Some of the deep learning
methods [15,20] employ the patch-based matching algorithm that compares
the pedestrian pair early in the convolutional neural network (CNN), then
summarizes the comparison by using a softmax classifier to output the deci-
sion whether the input pair belongs to the same subject. The early compar-
ison in the CNN exploits the spatial correspondence in feature maps. Gate
Siamese CNNs [21] perform the middle-level comparison in a similar way.
Su et al. [22] trained the network with the assistance of pedestrian attributes.
Varior et al. [23] proposed a Siamese Long Short-Term Memory architecture
to accomplish the task in a sequential patch manner.

Compared with training by softmax, some other deep learning methods
propose to let the network learn discriminative representations of pedestrian
via appropriate metrics and cost functions. These methods, generally referred
to as deep metric learning, unify the two parts (features computing and met-
ric learning) of person reidentification into an integrated framework. This
framework is expected to give better generalization ability than the softmax
classifier, which is critical to perform the person-reidentification task in which
the training and test sets do not share galleries.

The CNN extracts discriminative features from the input images, and
the metric component compares the features with the learned metric. Pre-
viously, we proposed a Deep Metric Learning (DML) method [24], which first
adopted a Siamese network to extract the features of the input pair; then,
the features were compared by using the metrics such as the Euclidean dis-
tance, the cosine similarity, or the absolute difference, and finally, the cost
function (the binomial deviance or Fisher criterion) was computed to train
the network by stochastic gradient descent. Recently, we proposed another
approach called Embedding Deep Metric (EDM) [25], which implemented
the Mahalanobis distance in a single fully connected (FC) layer after CNNs
and improved the generalization ability of the metric through the regulariza-
tion that makes a balance between the Mahalanobis and Euclidean distance.
Besides, EDM suggests that selecting suitable positive training samples is im-
portant for EDM as well. Considering pedestrian data has large intraclass
variations (illumination, pose, occlusion, etc.), the feature is distributed as
highly curved manifolds, thus training with the Euclidean distance in the
global range is suboptimal. Based on the analysis, Moderate Positive Mining is
introduced to choose suitable positive samples for better training against large
variations.

In this chapter, the focus is mainly on the two representative methods,
DML (Section 5.2) and EDM (Section 5.3), of which the major contributions
are EDM and Moderate Positive Mining for learning deep neural networks for
person reidentification.
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5.2 Deep Metric Learning

In this section, we introduce the method of DML (i.e., the deep metric learning
for practical person reidentification [24]). This work employs a Siamese net-
work to extract the features from a pair of input pedestrian images and train
the network with various choices of metrics and cost functions on the top of
the network. The network jointly learns the image feature and discriminative
metric in an unified framework. Specifically, the combination of cosine simi-
larity and binomial deviance performs the best and shows robustness to large
variations. For the purpose of practical person reidentification, the network is
trained in one data set, but tested across different other data sets.

5.2.1 Neural network architecture

The network has a symmetric architecture, referred to as Siamese network,
which is shown in Figure 5.1. The two subnetworks consist of convolutional
layers with shared weights. Therefore, the whole network is in a light-weight
fashion and able to handle well the general task of cross-dataset person
reidentification. The detail structure of the subnetwork is shown in Figure 5.2.
It contains three branches of a convolutional network. Each of the branches,
which are in charge of a fixed patch of image from top to bottom, respec-
tively, is composed by two convolutional layers and two max-pooling layers.
The number of filters is 64 for both convolutional layers. The filter sizes are
7×7 and 5×5, respectively. The nonlinearity is introduced by the rectified lin-
ear unit [17] function. Every max-pooling layer also processes a cross-channel

Camera A

Camera B

CNN A

CNN B

Cost
function

Label
(−1, 1)

Connection
function

FIGURE 5.1
The framework of DML Siamese network, including CNNs, connection func-
tion, and cost function.
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Parameters
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Normalization and
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FIGURE 5.2
The details of the subnetwork in DML network.

normalization operation so the model can be more steady numerically. The
weights of the first convolutional layer are shared between the branches,
whereas the second convolutional layer is build in an unshared way. This
is because the first convolutional layer extracts the common low-level image
features directly from the inputs, and the following layers are expected to
learn high-level patch-specific features. At the end, an FC layer is disposed to
receives the three branches and outputs a 500-dimension feature vector.

The two CNN subnetworks are connected by a connection function (i.e.,
metric). Given a pair of pedestrian images, the Siamese network extracts the
features from the images, and the similarity is computed by the connection
metric. In the training stage, the network predicts a label l = ±1 denoting
whether the image pair belongs to the same subject, compares the prediction
with the ground-truth labeling, and computes and back-propagates the gra-
dient to update the network weights; in the test stage, however, the network
directly outputs the similarity score for the ranking evaluation.

5.2.2 Metric and cost function

There are various choices to be used as the metric and the cost function. DML
selects three of them as the candidates for metric: the Euclidean distance,
cosine similarity, and absolute difference. The definition of the metrics are
given as:

Seuc(x, y) = −‖x− y‖2, (5.1)
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Scos(x, y) =
xT y

‖x‖‖y‖ , (5.2)

Sabs(x, y) = −‖x− y‖1, (5.3)

where x and y denotes the input pair. The distance metrics are converted
to similarity by the negation. Among these metrics, the Euclidean distance
has a convenience of simple derivation, but the unbounded gradient would
lead to blowing up of training; the cosine similarity has a bounded support
and the invariance to the scaling of features; and the absolute distance is not
differentiable in some situations. According to the good property of cosine
similarity, DML adopts the cosine similarity to perform the connection metric.

As for the loss function, DML adopts two candidates in the experiments:
the binomial deviance and the Fisher criterion. The formulations are given as:

Ldev =
∑

i,j

W � ln(e−α(S−β)�M + 1), (5.4)

Lfisher = − (
∑

i,j P � S)2
∑

i,j(S − S̄)2
, (5.5)

where � denotes the element-wise matrix product, and

S = [Sij ]n×n, Sij = S(xi, xj), (5.6)

M = [Mij ]n×n, Mij =

⎧
⎪⎨

⎪⎩

1, positive pair

−1, negative pair

0, neglected pair,

(5.7)

W = [Wij ]n×n, Wij =

⎧
⎪⎨

⎪⎩

1/np, positive pair

1/nn, negative pair

0, neglected pair,

(5.8)

P = [Pij ]n×n, Pij =

⎧
⎪⎨

⎪⎩

1/np, positive pair

−1/nn, negative pair

0, neglected pair,

(5.9)

where:

Sij is the similarity of sample xi and xj

S̄ is the mean of S
Mij indicates whether xi and xj belong to the same identity
np and nn is the number of positive and negative pairs, respectively
α and β are the hyperparameters of binomial deviance

Through minimizing the binomial deviance (Equation 5.4) and Fisher criterion
(Equation 5.5), the network learns to reduce the distances of positive pairs
while englarging the distances of negative pairs.
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It is worth noting that the binomial deviance cost gives more attention to
the samples near the decision boundary or misclassified, whereas the Fisher
criterion is focused on all the entries of the similarity matrix S equally.

5.2.3 Performance

By calculating the gradient of cost function with respect to the sample and
weight, the network is updated via stochastic gradient descent until the train-
ing converges. The preliminary experiment is conducted on VIPeR [26] to
compare the binomial deviance and the Fisher criterion. Then, the main eval-
uation is accomplished in both intra- and cross-dataset manners with the data
sets VIPeR, PRID [27], i-LIDS [28], and CUHK Campus [5].

VIPeR is a challenging and widely used data set for person reidentification.
It includes 632 subjects, with two pedestrian images per subject captured by
two different cameras in an outdoor environment. There are large variations
in poses, illuminations, and camera angles among these images. The PRID
data set is similar to VIPeR and contains the pedestrian images from two
disjoint cameras, which include 385 and 749 subjects, respectively. There are
200 overlapping subjects between them. The experiment randomly selects 100
of them for training and the remaining for test. For the VIPeR data set, the
632 subjects are divided into two subsets with equal number for either train-
ing or test. The i-LIDS data set contains 119 subjects with a total 476 of
images from multiple disjoint cameras. There are four images for each sub-
ject on average. Most of the images show large variations of illumination and
resolution. The CUHK Campus data set is relatively large in scale, includ-
ing 1816 subjects and 7264 pedestrian images in total. Each subject has four
images, captured with two camera views in a campus environment. Camera
A captures the frontal view or back view of pedestrians, whereas camera B
captures the side views. The image resolution varies among these data sets.
For example, CUHK Campus consists of high-resolution pedestrian images,
whereas the others are in relatively low resolution. All the images are normal-
ized to 128× 48 RGB for the training and test.

The preliminary experiment results are listed in Table 5.1. At all ranks,
the binomial deviance gives better accuracy than the Fisher criterion.

TABLE 5.1
Comparison of recognition rate of binomial deviance and Fisher criterion on
VIPeR under Dev. view

Rank 1 (%) 5 (%) 10 (%) 15 (%) 20 (%) 25 (%) 30 (%) 50 (%)

Binomial 34.49 60.13 74.37 80.70 84.18 88.61 91.14 96.84
deviance

Fisher 14.24 35.13 47.15 56.96 62.66 67.41 71.84 80.06
Criterion
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TABLE 5.2
Performance comparison on VIPeR

Rank 1 (%) 5 (%) 10 (%) 15 (%) 20 (%) 25 (%) 30 (%) 50 (%)

LAFT [5] 29.6 – 69.3 – – 88.7 – 96.8
Salience [8] 30.2 52.3 – – – – – –
DML 34.4 62.2 75.9 82.6 87.2 89.7 92.3 96.5

TABLE 5.3
Performance comparison on PRID

Rank 1 (%) 5 (%) 10 (%) 15 (%) 20 (%) 25 (%) 30 (%) 50 (%)

Descr. 4 – 24 – 37 – – 56
Model [27]

RPML [29] 15 – 42 – 54 – – 70
DML 17.9 37.5 45.9 50.7 55.4 59.3 63.1 71.4

As mentioned in the previous section, the superiority of binomial deviance can
be attributed to the focus on the hard samples near the decision boundary.

According to the good performance of binomial deviance, the final DML
model adopts the combination of cosine similarity and binomial deviance for
training. The intradata set evaluation is conducted on VIPeR and PRID.
The performance of DML is listed in Tables 5.2 and 5.3. DML improves
the previous rank-1 identification rate by 4% and 3% on VIPeR and PRID,
respectively. One can refer to [24] for the details of performance comparison
with the state-of-the-art methods.

In the cross-dataset evaluation, DML is trained on i-LIDS, CUHK Campus,
or the fusion of both, and tested on VIPeR and PRID. For both tests on
VIPeR and PRID, the best results of DML are obtained through the training
on the fusion of the two data sets, i-LIDS and CUHK Campus (Table 5.4),
outperforming the previous methods. One can refer to the experiment part of
DML [24] for the comparison details.

TABLE 5.4
Cross-dataset evaluation of DML on VIPeR and PRID

Training set Test set 1 (%) 10 (%) 20 (%) 30 (%)

i-LIDS VIPeR 11.61 34.43 44.08 52.69
CUHK VIPeR 16.27 46.27 59.94 70.13
i-LIDS + CUHK VIPeR 17.72 48.80 63.35 72.85
i-LIDS PRID 8.0 25.5 38.9 45.6
CUHK PRID 7.6 23.4 30.9 36.1
i-LIDS + CUHK PRID 13.8 35.4 45.0 51.3
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5.3 Training Against Large Intraclass Variations

In this section, we present the work of EDM for person reidentification [25].
Similar to DML, EDM also employs the framework of a Siamese network and
further implements the Mahalanobis distance into a single FC layer with a
special regularization. Besides, EDM proposes the Moderate Positive Mining
strategy to train better networks against large intraclass variations in the
pedestrian data.

5.3.1 Moderate positive mining

Compared with face recognition, person reidentification is a much more
difficult task because of the large intraclass variations that are specific in
pedestrian data. These variations mainly come from the factors of illumi-
nation, occlusion, pose, background, misalignment co-occurrence of people,
appearance changing, and so on. Figure 5.3a shows some examples of hard

(a)

(b) (c)

FIGURE 5.3
(a) Some hard positive cases of reidentification. They are influenced by the fac-
tors of occlusion, illumination, pose, etc. (b) Illustration of the highly curved
manifold of three identities. (c) The purpose of Moderate Positive Mining
is to reduce the intraclass variance while preserving the intrinsic graphical
structure.
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positives, which are even difficult for humans to distinguish. As a result, the
pedestrian data are distributed as highly curved manifolds when they are
mapped into feature space (Figure 5.3b). Therefore, using the Euclidean dis-
tance in the global range is inappropriate for both training and testing CNNs.
However, the geodesic distance is not available because the distribution is un-
known. In light of manifold learning methods [30–32], EDM proposes to use
the Euclidean distance in the local range and the graphical relationship to
approximate the geodesic distance for training CNNs. The goal is to reduce
the intraclass variance along the manifold for the supervised learning, while
preserving the intrinsic graphical structure (Figure 5.3c).

To accomplish the geodesic distance approximation by local Euclidean, the
definition of local becomes critical. Based on the batch-training framework of
deep CNNs, EDM proposes to select moderate positive samples in an adaptive
way throughout the training process. This training sample-selection strategy,
namely Moderate Positive Mining, is performed to provide suitable positive
training pairs to the CNN learning.

Specifically, given two image sets, I1 and I2, captured by two disjoint
cameras, we denote the positive pair (same identity) as {I1, Ip2|I1 ∈I1, Ip2 ∈I2},
and the negative pair (different identities) as {I1, In2 |I1 ∈ I1, In2 ∈ I2}, and the
CNN as Ψ(·). d(·, ·) is the Mahalanobis or Euclidean distance. The Moderate
Positive Mining is performed as follows.

Algorithm 5.1: Moderate positive mining

Input: Randomly select an anchor sample I1, its positive samples
{Ip12 , . . . , Ipk2 }, and negative samples {In1

2 , . . . , Ink
2 } to form a

mini-batch.
Step 1 Input the images into the network for obtaining the features, and
compute their distances {d(Ψ(I1),Ψ(Ip12 )), . . . , d(Ψ(I1),Ψ(I

pk
2 ))} and

{d(Ψ(I1),Ψ(In1
2 )), . . . , d(Ψ(I1),Ψ(I

nk
2 ))};

Step 2 Mine the hardest negative sample

În2 = argminj=1...k{d(Ψ(I1),Ψ(I
nj

2 ))};
Step 3 From the positive samples, choose those Ĩpm2 satisfying

d(Ψ(I1),Ψ(Ĩpm2 )) ≤ d(Ψ(I1),Ψ(În2 ));

Step 4 Mine the hardest one among these chosen positives as our moderate
positive sample

Îp2 = argmaxĨ
pm
2

{d(Ψ(I1),Ψ(Ĩpm2 ))}.
If none of the positives satisfies the condition in Step 3, choose the positive
with the smallest distance as the moderate positive sample.

Output: The moderate positive sample Îp2.

First, an anchor sample and its positive samples and negative samples
(equally sized) are randomly selected from the data set to form a mini-batch;
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then, the algorithm mines the hardest negative sample, and chooses the posi-
tive samples that have smaller distances than the hardest negative; finally, it
mines the hardest one among these chosen positives as the moderate positive
sample. Obviously, the moderate positive is defined adaptively within each
subject, whereas their hard negatives are also involved in case the positives
are too easy or too hard to be mined. Once the moderate positive samples are
found, they are provided along with the negatives to the CNN for learning.

5.3.2 Constrained metric embedding

EDM adopts the Mahalanobis distance as the connection metric to evaluate
the similarity of input pairs. Instead of computing the distance explicitly,
EDM implements the Mahalanobis distance into a single FC layer. Therefore,
the metric matrix can be learned jointly with the CNN weights. Besides, the
weight learning of the FC layer is constrained by a special regularization for
better generalization ability. This unit, defined as the metric-learning layers
of EDM, is shown in Figure 5.4.

By decomposing the metric matrix with its positive semi-definite property,
the Mahalanobis distance is developed as:

d(x1,x2) =
√

(x1–x2)TM(x1–x2) (5.10)

=

√

(x1–x2)TWWT (x1–x2),

= ‖WT (x1–x2)‖2. (5.11)

The matrix W corresponds to the weight of the FC layer. Furthermore, the
metric-learning layer is improved by a constraint that pushes the matrix

I1

Conv.
layers

Ψ(⋅)

FC
layers

Feature
vectors

Subtraction
(x1−x2)

x1 = Ψ(I1)

x2 = Ψ(I2)

Linear FC
WT(x1−x2)

L2 norm
d (x1−x2)

Conv.
layers

Tied
weights

FC
layers

I2
CNN part Mahalanobis metric layers

FIGURE 5.4
The overview of EDM framework. At the right part, the metric-learning lay-
ers compute the distance of two samples. x1 and x2 are the feature vectors
extracted by the CNN from the images.
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WWT close to the identity matrix I. Then, the network is trained via a
combination of contrastive cost (L) and the regularization term, formed as:

L̂ = L+
λ

2
‖WWT − I‖2F . (5.12)

When the value of λ becomes very large, the metric falls to the naive Eu-
clidean distance, which is less discriminative than the constraint-free Maha-
lanobis distance, but may be more robust to unseen test data. The purpose
of the constraint is to find an optimal balance between the Euclidean and
Mahalanobis distance.

5.3.3 Performance

The validation set of CUHK03 [15] is used to confirm the effectiveness of
Moderate Positive Mining and the constrained deep metric embedding. Then,
the performance of EDM is reported with the tests on CUHK03, CUHK01 [33],
and VIPeR.

The CUHK03 data set contains 1369 subjects, each of which has around 10
images. The images are captured with six surveillance cameras over months,
with each person observed by two disjoint camera views and having an average
of 4.8 images in each view. The common protocol randomly selects 1169 sub-
jects for training, 100 for validation, and 100 for test with single-shot setting.
The CUHK01 data set contains 971 subjects, with four images per subject
from two disjoint cameras. It is divided into a training set of 871 subjects and a
test set of 100. These images are captured in the similar environment, but with
nonoverlapping identities of those in CUHK03. As mentioned in the previous
section, VIPeR is a challenging data set for deep learning methods because of
its small size and large variations in background, illumination, and viewpoint.
Nonetheless, VIPeR is used to evaluate the robustness of EDM. All these
pedestrian images are normalized into 128×64 RGB for the training and test.

The effectiveness of Moderate Positive Mining is proved on the validation
set. The CNN is deployed and trained in a similar way with the DML method.
The network is first pretrained with a softmax classifier as the baseline model,
of which the outputs correspond to the training subjects. Then, the softmax
is discarded, and the network is further trained with the metric-learning layer.
The performance is shown in Figure 5.5a, in which the comparison includes
the different combinations of Moderate Positive Mining and Hard Negative
Mining [34]. The collaboration of two mining strategies achieves the best result
(light gray-colored line), whereas the absence of Moderate Positive Mining
leads to a significant derogation of performance (dark-gray). This reflects that
the manifold is badly learned if all the positives are used undiscriminatingly. If
no mining strategy is used (black), the network gives a very low identification
rate at low ranks, even worse than the softmax baseline (black). This indicates
that Moderate Positive Mining and Hard Negative Mining are both crucial for
training. From Figure 5.5a we can also see that the performances of the three
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FIGURE 5.5
(a) Accuracies under different mining settings on CUHK03 validation. (b) The
rank-1 identification rates with different λ of the weight constraint.

metric-embedded networks are much better than the softmax-based baseline
network. Especially, the identification rates of the former three are near 100%
after rank 20, whereas the baseline network remains at a lower identification
rate than the other three. This indicates that the training with the metric
layers is the basic contributor of the improvement.

Also on the CUHK03 validation, the varying value of λ leads to different
rank-1 accuracies (Figure 5.5b). If λ is too small, the metric is free of con-
straint, leading to low generalization ability, whereas when λ is too large, the
metric is suffered by under-fitting. The best result is achieved at λ = 10−2.

As reported in [25], because of the improvements from Moderate Positive
Mining and the constrained metric embedding, the network achieves com-
petitive results with the state-of-the-art methods (including IDLA [20],
FPNN [15], LOMO-XQDA [12], KISSME [4], DeepFeature [35], Siamese
LSTM [23], Gated S-CNN [21], and SSDAL+XQDA [22]) on the test sets
of CUHK03 and VIPeR (Tables 5.5 and 5.7). With much less weights, the
EDM network improves the previous best rank-1 identification accuracy by
4% on CUHK01 (Table 5.6). Figure 5.6 shows the CMC curves and rank-1
accuracies of EDM and partial competitors on the three data sets.

TABLE 5.5
Performance comparison on CUHK03

Rank 1 (%) 5 (%) 10 (%) 15 (%) 20 (%)

KISSME [4] 14.17 37.47 52.20 62.07 69.38
FPNN [15] 20.65 50.94 67.01 76.19 83.00
LOMO-XQDA [12] 52.20 82.23 92.14 94.74 96.25
IDLA [20] 54.74 86.50 93.88 97.68 98.10
Siamese LSTM [23] 57.3 80.1 88.3 – –
Gated S-CNN [21] 68.1 88.1 94.6 – –
EDM 61.32 88.90 96.44 99.04 99.94
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TABLE 5.6
Performance comparison on CUHK01

Rank 1 (%) 5 (%) 10 (%)

FPNN [15] 27.87 59.64 73.53
KISSME [4] 29.40 60.18 74.44
IDLA [20] 65 89 94
EDM 69.38 91.03 96.84

TABLE 5.7
Performance comparison on VIPeR

Rank 1 (%) 5 (%) 10 (%) 15 (%)

IDLA [20] 34.81 63.61 75.63 80.38
DeepFeature [35] 40.47 60.82 70.38 78.32
mFilter+LADF [6] 43.39 73.04 84.87 90.85
SSDAL+XQDA [22] 43.5 71.8 81.5 —
Siamese LSTM [23] 42.4 68.7 79.4 —
Gated S-CNN [21] 37.8 66.9 77.4 —
EDM 40.91 67.41 79.11 86.08
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5.4 Summary and Future Directions

Given the CNN framework for visual tasks, the deep metric-embedding meth-
ods encounter three major issues: training sample selection, metric design, and
cost function. The selection of appropriate metric and cost function is critical
for training the network effectively. Besides, because the large variations ex-
ist in the intrapersonal data, selecting a suitable positive training sample is
also critical. How to deal with these issues is the central topic of DML for per-
son reidentification because the pedestrian data are suffered by large intraclass
variations, which lead to greater difficulty in comparison with face recognition.

In this chapter, we introduced two recent methods based on DML for
person reidentification. DML and EDM are dedicated to handle the issues
via the proposed network and training strategy. However, there is still room
for improvement on the benchmark performance of both intra- and cross-
dataset evaluation. In light of the suggestions from DML and EDM, there
are certain research challenges to be addressed based on them. For example,
the robustness to pose could be improved by involving body geometry in-
formation and pose normalization; the Fisher criterion in DML needs to be
modified to adapt the heteroscedastic distributions; and although the idea of
Moderate Positive Mining is intuitive, it is important to formulate the corre-
spondence between the sample selection and the target performance. Besides,
more attempts are expected for the improvement of loss function. For exam-
ple, DeepFeature [35] employed triplet loss for training a deep CNN for person
reidentification in their work. Another issue for DML is the limited amount of
pedestrian training data. DTML [36] accomplished the deep metric learning
via transfer learning technique to cope with the small data set size problem.
These open issues may lead to the major directions in developing deep metrics
for person reidentification in the future.
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6.1 Introduction

Kinship refers to the sharing of selected genetic characteristics and features
between members of a family. Kinship and its characteristics have been widely
studied in diverse scientific disciplines such as anthropology, psychology, neu-
roscience, and computer vision (as displayed in Figure 6.1). The study of
kinship is valuable from various perspectives. Kinship was the central idea
of anthropology research for more than a century [1]. The research on kin-
ship systems and their anthropological aspect was pioneered by Morgan [2]
and has gathered significant attention over the years. Moreover, researchers
have evaluated the effect of nature versus nurture [3] and have observed social
bonds arising in specific cultural context. The entire area of new genetics has
brought kinship to the forefront because of the prevailing understanding of
disease etiology [4].

Looking at kinship from a social perspective, organisms tend to form
groups based on kinship relations. It was suggested that kin-group charac-
teristics affect the cooperation among the kin through residence and mating
patterns [5]. There have been several studies that aim to unravel the pro-
cess of kinship recognition among organisms. This ability is observed across
all primates in terms of living in groups, forming bonds with offspring, and
recognition of kin [6]. Taylor and Sussman [7] studied kinship affinities among
Lemur catta and established that several factors such as proximity, grooming,
and mating patterns are dependent on kinship among the lemurs.

The cognitive process of humans to identify kinship relations and explo-
ration of forming kin-based bonds has been a popular topic of interest in
neuroscience. It has been established that humans recognize and rely on kin-
ship affinities that trigger cognitive and social interactions, and family support
networks, including an understanding of common genetic diseases for possi-
ble medical interventions. Likewise, the bonds between children and mother
have been an area of huge interest in the field of psychology and neuroscience
[8–10].

Anthropology Psychology

Neuroscience Computer vision

Kinship research

FIGURE 6.1
Kinship has been explored in various diverse research areas such as anthro-
pology, psychology, neuroscience, and computer vision.
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Kinship determination in humans is performed by two techniques: DNA
testing and verification via facial cues. DNA testing is the traditional way
to determine the similarity of genetic material between two individuals. The
result of this technique is highly accurate and is age invariant. It is also used for
locating genetic relatives and gathering family genealogical details. However,
this reliable process is intrusive and may require several hours for processing.
On the other hand, relatively new computational approaches have been pro-
posed to verify kinship using facial images, leading to enhanced interest in this
field. Faces are valuable visual stimuli, and it has been observed that humans
have excellent face-processing and cognition skills [11]. Faces can convey eth-
nicity, gender, age, and emotions of an individual. Therefore, faces are also
being used to determine kin relationship between individuals. In this chap-
ter, kinship refers to at most one-generation direct blood descendants. It has
been demonstrated that these descendants share similarities in face structure
as well. However, kinship information is also present in second-level relation-
ships such as grandmother–grandchild. These similarities have been called
familial traits by Hogben [12]. Some examples of kin relationship are shown
in Figure 6.2.

The hypothesis that similarity among human faces can be a cue for kinship
was first formulated by Daly and Wilson [13]. Since then, facial similarity/
resemblance has been used to determine kinship in various research experi-
ments [14–18]. In these experiments, participants were presented with the face
images and were asked to judge if a kin relationship existed. Maloney and
Martello [19] examined the relation between similarity and kinship detection
among siblings and concluded that observers look for similarity in judging kin-
ship among children. Martello and Maloney [20] concluded that the upper por-
tion of the face has more discriminating power as compared to the lower half in
kinship recognition. In a different study, to determine the effect of lateraliza-
tion on allocentric kin recognition, they concluded that the right half-portion

Brother–Sister Sister–Sister Mother–DaughterBrother–Brother

Father–Daughter Father–Son Mother–Son

FIGURE 6.2
Common examples of lineal kin relationships.
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of the face is equal to the left half-portion of the face [21]. Kaminski et al. [22]
demonstrated that humans can identify kin generations apart with a varying
success ratio. They also deduced that children resemble their mothers more
as compared to their fathers, a result which is also presented in [23] and [24].

Various neurological studies have been conducted to examine the rea-
sons behind the ability of humans to detect genetic relatedness. Lieberman
et al. [25] proposed the existence of Kinship Model Index (KIi), which allows
humans to detect kin. They determined two cues: (1) duration of coresidence
and (2) Maternal Perinatal Association (MPA) to be used by humans to com-
pute KIi. Kaminski et al. [26] established that later-born children are better
at kin recognition as compared to first-born, which further substantiated the
effect of MPA given by [25]. Platek and Kemp [27] performed a study using
functional magnetic resonance imaging to investigate the differences among
humans between viewing kin images as compared to other classes of face (self,
unfamiliar). Their findings suggest that the preexisting facial network learned
by humans from their birth is used to discriminate between kin and nonkin
with the presence of an established neurocognitive system.

Kinship verification has also gathered enthusiasm from computer-vision
and machine-learning communities. Automatic kinship verification using facial
images has several applications such as:

1. Locating relatives in public databases,

2. Determining kin of a victim or suspect by law enforcement agencies
and screening asylum applications where kinship relationships are
to be determined,

3. Organizing and resolving identities in photo albums, and

4. Boosting automatic face recognition capabilities.

The problem of kinship verification is particularly challenging because of the
large intra-class variations among different kin pairs and different kin rela-
tions. These diverse variations in the kin pairs can be attributed to various
aspects such as age gap in the kin pairs, differences in gender of the kin pair
(for instance, mother–son and father–daughter), and variations resulting from
ethnicity (such as biracial kin pairs). At the same time, look-alikes decrease
the interclass variation among the facial images of kin. For instance, a dop-
pelganger of an individual may have high facial similarity with that person,
but is unlikely to share the same genetic material.

The research in kinship verification by using facial images commenced
in 2010 by Fang et al. [28]. They collected the first kin face pair data set,
Cornell KinFace database, consisting of 286 subjects. They also proposed an
algorithm for facial-feature extraction and forward-selection methodology for
verifying kin pairs. A pictorial structure model with springlike connections was
used along with color features, length between facial parts, and gradient his-
togram for verifying kin. They demonstrated kinship-verification performance
of 70.67% on the Cornell KinFace database. Since then, several algorithms
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TABLE 6.1
Overview of kinship verification algorithms published from 2010 to 2017

Kinship verification
Year algorithm Database Accuracy (%)

2010 Pictorial structure model [28] Cornell KinFace 70.67
2011 Transfer learning [29] UB KinFace 60.00

Transfer subspace learning [30] UB KinFace 69.67
Spatial pyramid learning–based
(SPLE) kinship [31]

Private Database 67.75

2012 Attributes LIFT learning [32] UB KinFace 82.50
Self-similarity representation of
Weber faces [33]

UB KinFace 69.67
IIITD Kinship 75.20

Product of likelihood ratio on
salient features [34]

Private Database 75.00

Gabor based gradient oriented
pyramid [35]

Private Database 69.75

2013 Spatio-temporal features [36] UvA-NEMO Smile 67.11
2014 Multiview neighborhood

repulsed metric learning [37]
KinFaceW-I 69.90
KinFaceW-II 76.50

Discriminative multimetric
learning [38]

Cornell KinFace 73.50*
UB KinFace 74.50
KinFaceW-I 72.00*
KinFaceW-II 78.00*

Discrimination via gated
autoencoders [39]

KinFaceW-I 74.50
KinFaceW-II 82.20

Prototype discriminative
feature learning [40]

Cornell KinFace 71.90
UB KinFace 67.30
KinFaceW-I 70.10
KinFaceW-II 77.00

2015 Inheritable Fisher vector [41] KinFaceW-I 73.45
KinFaceW-II 81.60

2016 VGG-PCA [42] FIW Database 66.90
Ensemble similarity
learning [43]

KinFaceW-I 78.60
KinFaceW-II 75.70

2017 KVRL [44] Cornell KinFaceW 89.50
UB KinFace 91.80
KinFaceW-I 96.10
KinFaceW-II 96.20
WVU Kinship 90.80

*Represents that the value is taken from receiver operating characteristic (ROC) curve in
the paper.

have been proposed for detecting kin using different machine learning tech-
niques and Table 6.1 summarizes the papers published from 2010 to 2017.

Xia et al. [29] introduced a new publicly available UB KinFace database,
which consists of 200 groups, each containing one image of child and parents
when they were young and old. An experimental protocol where the nega-
tive kin pairs were randomly created was discussed. They proposed a transfer
subspace method for kinship verification where the images of parents when
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they were young were used as an intermediate distribution toward which the
images of old parents and images of young children can be bridged. They
showed kinship-verification accuracy of 60% on the UB KinFace Database.
In another paper, Shao et al. [30] used Gabor filters alongside metric learn-
ing and transfer subspace learning on the same database. They reported an
accuracy of 69.67% for kinship verification. Xia et al. [32] also employed the
algorithm alongside understanding semantic relevance in the associate meta-
data to identify kin pairs in images.

Metric-learning approaches involve learning a distance function for a task.
Lu et al. [37] proposed a multiview neighborhood repulsed metric-learning
approach, where a metric was learned such that kin pairs are closer to each
other as compared to nonkin pairs. They also introduced two new databases,
KinFaceW-I and KinFaceW-II, for promoting research in automatic-kinship
verification and developed fixed protocols for these databases. Each pair
of images in KinFaceW-I is acquired from different photo, whereas in
KinFaceW-II, it is acquired from the same photo. An accuracy of 69.90%
is shown on KinFaceW-I and 76.50% is shown on KinFaceW-II. Yan et al.
[38] jointly learned multiple distance metrics on different features extracted
from a pair of images. The correlation of different features belonging to the
same sample is maximized alongside the probability of kin images belonging
together. They reported an accuracy of 72.00% on KinFaceW-I and 78.00%
on KinFaceW-II database.

Yan et al. [40] proposed a prototype discriminative feature-learning
algorithm, where midlevel features representing decision values from support
vector machine hyperplanes are used and a metric is learned that minimizes
the distances between kin and maximizes neighboring nonkin samples. The
algorithm reports an accuracy of 70.10% on KinFaceW-I and 77.00% on
KinFaceW-II database. A new ensemble similarity learning metric was pro-
posed by Zhou et al. [43] where a sparse bilinear similarity function was used
to model the relative characteristics encoded in kin images. An ensemble
of similarity models was employed to achieve strong generalization ability.
A mean accuracy of 78.60% was reported on the KinFaceW-I data set and a
mean accuracy of 75.70% was reported on the KinFaceW-II data set.

Several feature descriptors have been proposed for the problem of kinship
verification. Zhou et al. [31] presented a new Spatial Pyramid Learning-based
feature descriptor (SPLE) for the purpose of kinship verification. They used
normalized absolute histogram distance and reported a performance accuracy
of 67.75% for kinship verification on their in-house database. Kohli et al. [33]
applied Weber faces for illumination correction and proposed self-similarity–
based approach for handling kinship variations in facial images. They reported
an accuracy of 75.20% accuracy on the IIITD-Kinship Database. Zhou et al.
[35] also proposed a Gabor-based gradient-oriented pyramid for the problem of
kinship verification. They used a support vector machine classifier to classify
if a given pair of images was kin and reported a mean accuracy of 69.75%
on their database. Guo and Wang [34] used DAISY descriptors along with
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a product of likelihood ratio for verifying kin and their algorithm yielded
75.00% accuracy. Liu et al. [41] proposed a novel inheritable Fisher vector
feature, which maximizes the similarity between kin pairs while minimizing
the similarity between nonkin pairs. They reported an accuracy of 73.45% on
the KinFaceW-I database and 81.60% on the KinFaceW-II database.

Recently, there has been a shift in machine-learning algorithms to employ
deep learning frameworks if there are large amounts of training data avail-
able. Dehgan et al. [39] used gated autoencoders to fuse generated features
with a discriminative neural layer at the end to delineate parent–offspring
relationships. The authors reported an accuracy of 74.50% on the KinFaceW-I
database and 82.20% on the KinFaceW-II database. Robinson et al. [42] used
the learned VGG convolutional neural network for the problem of kinship ver-
ification. Additionally, they also released the largest kinship database, FIW
database, that contains images of more than 1000 families. They showed that
the combination of VGG features alongside PCA gives the best performance
of 66.90% on the FIW database.

6.1.1 Research problem

The direct comparison of algorithms proposed in the literature is challenging
because of the lack of standardized experimental protocol in classifying kin. At
the same time, a small number of images in publicly available data sets led to
difficulties in training deep learning models. The study of kinship verification
can be divided into two parts: (1) pairwise kinship verification, which involves
analyzing face pairs of an individual with their family members, and (2) self-
kinship, which is kinship verification with age-separated images of the same
individual (or age-invariant face verification). This chapter presents in-depth
analysis of performance of deep learning algorithms in the Kinship Verifi-
cation via Representation Learning (KVRL) framework proposed by Kohli
et al. [44]. KVRL relies on representation learning of faces, and the learned
representations are used to model the kinship characteristics in a facial image.
These learned face representations are then used for classifying kin and nonkin
pairs and for self-kinship verification (age-invariant face verification of the
same individual). Efficacy of deep belief networks (DBNs) and Stacked De-
noising Autoencoders (SDAEs) in the KVRL framework is demonstrated using
five kinship data sets.

6.2 Deep Learning Algorithms for Kinship Verification
Using Representation Learning Framework

Deep learning has been successfully applied to model representations in nat-
ural language processing [45–48], speech recognition [49], image segmentation
[50], and object recognition [16,51]. These algorithms learn the deep features
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in an abstract manner by using a network of nonlinear transformations in a
greedy layer-wise mechanism [53,54]. Among many deep learning algorithms,
SDAEs and DBNs are two popular techniques. This section describes these
deep learning techniques, including how they are hierarchically structured in a
KVRL framework to learn the representations of faces for kinship verification.

6.2.1 Stacked denoising autoencoder

Let x ∈ Rα represent the input feature vector. An autoencoder [55] maps the
input vector to a reduced feature y using a deterministic encoder function fθ
as given in Equation 6.1.

y = fθ(x) = σ(Wx+ b) (6.1)

where:

θ = {W, b} represents the weight and bias to be learned
σ represents the activation function used in the multilayer neural network

This feature y is then used by a decoder function to reconstruct the input as
shown in Equation 6.2.

x̂ = fθ′(y) = σ(W ′y + b′) (6.2)

where:

θ′ = {W ′, b′} is the approximate weight and bias
σ is the sigmoid activation function and
x̂ represents the probabilistic approximation of x obtained from y

The autoencoder minimizes the reconstruction error between x and x̂.

arg minθ||x− x̂||2 (6.3)

The autoencoders are further optimized by introducing sparsity to activate few
hidden units during training. A sparsity constraint [56] on the hidden units of
the autoencoder ensures that a sparse representation is obtained according to
the optimization objective function given in Equation 6.4.

min

⎛

⎝
m∑

i=1

||xi−x̂i||2 + β
n∑

j=1

KL(ρ||ρ̂j)
⎞

⎠ (6.4)

where:

m is the input size of the data
n is the number of hidden nodes
ρ is the sparsity constant
β is the weight for sparsity penalty term

KL(.) is the Kullback–Leibler divergence metric given as,

KL(ρ||ρ̂j) = ρ log
ρ

ρ̂j
+ (1−ρ) log

(
1−ρ
1−ρ̂j

)

(6.5)
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Here, ρ̂j is the average activation of the hidden units in the autoencoder
during the training phase. The algorithm aims to optimize the value of ρ̂j
close to ρ, which will make the penalty term, KL(ρ||ρ̂j) = 0 in the objective
function. For learning robust and useful higher-level representations, denoising
autoencoders are used. Denoising autoencoders are introduced to circumvent
learning of identity mapping where the input vector x is first corrupted to x̄
and trained to get the reconstructed vector x̂. In effect, these autoencoders
are called sparse denoising autoencoders.

6.2.2 Deep belief networks

A Deep belief network (DBN) is a graphical model that consists of stacked
restricted Boltzmann machines (RBMs), which are trained greedily layer by
layer [51]. An RBM represents a bipartite graph where one set of nodes is the
visible layer and the other set of nodes is the hidden layer. A DBN models
the joint distribution between the observed vector x and n hidden layers (h)
as follows:

P (x, h1, . . . , hn) =

⎛

⎝
n−2∏

j=0

P (hj |hj+1)

⎞

⎠P (hn−1, hn) (6.6)

where:

x = h0, P (hk|hk+1) is a conditional distribution for the visible units
conditioned on the hidden units of the RBM at level k + 1

P (hn−1, hn) is the visible-hidden joint distribution in the top-level RBM

In their recent work, Hinton et al. [57], proposed dropout training as a suc-
cessful way to prevent over-fitting and an alternate method for regularization
in the network. This inhibits the complex coadaptation between the hidden
nodes by randomly dropping out few neurons during the training phase. It can
be thought of as a sampling process from a larger network to create random
subnetworks with the aim of achieving good generalization capability. Let f
denote the activation function for the nth layer, and W, b be the weights
and biases for the layer, ∗ denotes the element-wise multiplication, and m is a
binary mask with entries drawn i.i.d. from Bernoulli (1−r) indicating which
activations are not dropped out. Then the forward propagation to compute
the activation yn of nth layer of the architecture can be calculated as,

yn = f

(
1

1−r yn−1 ∗mW + b

)

(6.7)

6.2.3 Kinship verification via representation learning
framework

The KVRL framework proposed in [44] comprises two stages and is shown
in Figure 6.3. In the first stage, the representations of each facial region are
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FIGURE 6.3
Two-stage KVRL with three-level SDAE approach: (a) Local and global facial
representation training using the SDAE framework and (b) Supervised kin
versus nonkin classification using learned representations from Figure 6.3a.

learned. These individually learned representations are combined to form a
compact representation of the whole face in the second stage. Finally, a multi-
layer neural network is trained using these reduced feature representations of
the whole face for supervised classification of kin and nonkin. The two stages
of the KVRL framework–with SDAEs and DBNs are described.

KVRL-SDAE : A representation of a face image is learned by stacking
sparse denoising autoencoders in two stages and learning in a greedy layer-wise
manner. Stacking autoencoders reduces the classification error [58] and thus
learns better representations than a single autoencoder. The complete face
image is taken to model the global features while T-region and not-T region
are chosen to model the local features as reported in [44]. These regions are
also shown in Figure 6.3. Therefore, in the first stage of the KVRL framework,
one SDAE is trained for each facial region so that each stacked autoencoder
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can learn a representation of the given face region. Each region is resized to a
standardM×N image and converted to a 1×MN vector, which is provided as
an input to a three-layer stacked sparse denoising autoencoder. Each SDAE
is trained using a stochastic gradient descent followed by fine-tuning using
backpropagation.

AEi
j represents an autoencoder that maps the input vector to a reduced

feature vector. Here, i denotes the layer to which the autoencoder belongs,
and j represents the face region on which the autoencoder is trained. There-
fore, a stacked autoencoder can be represented as [AE1

1 , AE
2
1 , AE

3
1 ], indicating

that the stacked autoencoders are trained on face region 1 using three indi-
vidual autoencoders. Once the stacked autoencoders are trained for each face
region, the output from the last layer of each SDAE [AE3

1 , AE
3
2 , AE

3
3 ] are con-

catenated and given to the second-stage stacked autoencoder. This represents
the combination of higher-level features learned from local and global facial
regions. The SDAE in the second stage represents dimensionality reduction of
the input feature vector and is used for training the classifier.

KVRL-DBN : Similar to the KVRL-SDAE approach, a representation of
a face image is also learned by stacking RBMs and learning greedily layer
by layer to form a DBN. Each facial region is resized to a standard M × N
image and converted to a 1 × MN vector, which is provided as an input to
a three-layer RBM. Let RBMi

j represent an RBM, where i denotes the layer
to which the RBM belongs, and j represents the face region on which the
RBM is trained. In the first stage, a stacked RBM is trained and the output
from [RBM3

1 , RBM3
2 , RBM3

3 ] is concatenated and given to the second-stage
DBN.

Dropout is introduced in the second stage to learn the reduced features.
The advantage of applying dropout is that different configurations of neural
networks are trained based on the larger architecture and by employing shared
weights for the nodes that are not dropped out. After learning the individual
features in the first stage, the objective is to create a combined vector that
encodes this information in a reduced manner. In kinship verification, the
positive class has to encode large variation among the two pairs unlike face
recognition (where the subjects are the same). Therefore, the aim is to create
a representation of faces that generalizes well. By introducing dropout in this
approach, efficient generalization is obtained that emulates sparse representa-
tions to mitigate any possible overfitting.

6.2.3.1 Kinship verification via supervised training of extracted
features/kinship classification

The number of images in currently available kinship data sets are limited
and cannot be used directly to train the deep learning algorithms. Therefore,
a separate database is required to train the model employed in the KVRL
framework. Once the KVRL-SDAE and KVRL-DBN algorithms are trained,
representations of face images are extracted from them. This model provides a
compact representation of the combined local and global features representing
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the whole face image. For a pair of kin images, the features are concatenated
to form an input vector for the supervised classification. A three-layer feed-
forward neural network is trained for binary classification of kinship.

6.3 Experimental Evaluation

6.3.1 Kinship data sets

Five existing kinship databases are used for performance evaluation of the
KVRL framework and comparative analysis. For experimental evaluations,
the following kinship databases are used (shown in Figure 6.4):

1. Cornell kinship [28]: It consists of 286 images pertaining to 143
subject pairs. The facial images in this database are frontal pose
and have neutral expression.

Cornell Kin
• Subjects: 286
• Images: 286
• Kin relations: Father–Daughter, 
   Father–Son, Mother–Daughter, 
   Mother–Son
• Multiple images: No

UB KinFace
• Subjects: 400
• Images: 600
• Kin relations: Father–Daughter, 
   Father–Son, Mother–Daughter, 
   Mother–Son
• Multiple images: Yes (of 
   parents)

KinFace–II
• Subjects: 2000
• Images: 2000
• Kin relations: Father–Daughter, 
   Father–Son, Mother–Daughter, 
   Mother–Son
• Multiple images: No

KinFace–I
• Subjects: 1066
• Images: 1066
• Kin relations: Father–Daughter, 
   Father–Son, Mother–Daughter, 
   Mother–Son
• Multiple images: No

WVU Kinship
• Subjects: 226
• Images: 906
• Kin relations: Father–Daughter, 
   Father–Son, Mother–Daughter, 
   Mother–Son, Brother–Brother, 
   Sister–Sister, Brother–Sister
• Multiple images: Yes

FIGURE 6.4
Characteristics of kinship databases used for experimental evaluation.
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2. KinFaceW-I [37]: This database consists of 1066 images correspond-
ing to 533 kin pairs. It has 156 Father–Son, 134 Father–Daughter,
116 Mother–Son, and 127 Mother–Daughter kin pair images.

3. KinFaceW-II [37]: This database has been created such that images
belonging to the kin pair subjects are acquired from the same
photograph. It consists of 1000 kin pair images with an equal num-
ber of images belonging to the four kinship relationships: Father–
Son, Father–Daughter, Mother–Son, and Mother–Daughter.

4. UB KinFace [29]: This database consists of 200 groups consist-
ing of 600 images. Each group has one image of the child and
one image belonging to the corresponding parent when they were
young and when they were old. The database has 91 Father–Son,
79 Father–Daughter, 15 Mother–Son, and 21 Mother–Daughter kin
pair images.

5. WVU kinship [44]: All the aforementioned kinship data sets con-
tain only one image per kin pair and hence are not suitable for
face recognition experiments. The WVU kinship database [44]
was developed for both kinship-verification research and incorpo-
rates kinship scores to improve the performance of face recognition.
The WVU kinship data set consists of 113 pairs of individuals from
Caucasian and Indian ethnicity. The data set has four images per
person, which introduces intra-class variations for a specific kin pair.
It consists of the following kin relations:

1. Brother–Brother (BB): 22 pairs,

2. Brother–Sister (BS): 9 pairs,

3. Sister–Sister (SS): 13 pairs,

4. Mother–Daughter (MD): 13 pairs,

5. Mother–Son (MS): 8 pairs,

6. Father–Son (FS): 34 pairs, and

7. Father–Daughter (FD): 14 pairs.

These multiple images per kin pair also include variations in pose,
illumination, and occlusion.

6.3.2 Architectural details of the deep learning KVRL
framework

The results with two variants of the KVRL framework, namely KVRL-SDAE
and KVRL-DBN, are presented. Training the SDAE and DBN algorithms to
learn a representation of faces for kinship requires a large number of face
images. For this purpose, around 600,000 face images are used. These images
are obtained by combining existing face databases such as [59] and [60]. For
detecting faces, all the images are aligned using an affine transformation and
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a Viola-Jones face detection algorithm [61] is used. The face regions namely:
full face, T region, and not-T region are extracted from each face image.
Each facial region is resized to a 32 × 32 image and a 1024 vector is given
as input to individual SDAE or RBM deep learning algorithms in the first
stage. For every individual SDAE, three different autoencoders are stacked
together and all of them are learned in a greedy layer-wise fashion where each
level receives the representation of the output from the previous level. The
number of nodes in the SDAE learned for the three facial regions in the first
stage is same [AE1

j , AE
2
j , AE

3
j ] = [1024, 512, and 256]. An output vector of

size 256 is obtained from the third level of each SDAE. These outputs are
the representations learned from the global and local face regions and are
concatenated to form a vector of size 768. This vector is given to a SDAE in
the second stage to reduce the dimensionality. The final vector has a size of
192 and is the learned representation of the face image.

Similarly, three different RBMs are stacked together and all of them are
learned one layer at a time. The performance of the KVRL-DBN algorithm
is also tested using the top three facial regions from the human study. In the
first stage, the number of nodes in [RBM1

1 , RBM2
1 , RBM3

1 ] are 1024, 512, and
512, respectively. An output vector of size 512 is obtained from the third level
of each DBN and is concatenated to form a vector of size 1536. A compact
representation is learned from the DBN in the second stage and is used for
training the classifier. In the second stage of the DBN, the size of the three
layers are 1536, 768, and 384, respectively. Dropout is introduced in the second
stage with probability of 0.5.

6.3.3 Experimental protocol

The performance of the KVRL framework is evaluated on the same exper-
iment protocol as described in [38], where five-fold cross validation for kin
classification is performed by keeping the number of pairs in all kin relations
to be roughly equal in all folds. This is done to make the experiments directly
comparable even though the list of negative pairs included may vary. Random
negative pairs for kinship are generated ensuring no overlap between images
used for training and testing.

6.3.4 Performance results on five existing kinship databases

The kinship-verification accuracy results obtained using experiments con-
ducted on the Cornell kinship database, KinFaceW-I database, KinFaceW-II
database, UB KinFace database, and WVU kinship database are summarized
in Tables 6.2 through 6.5. From the results, SDAE and DBN algorithms in the
KVRL framework show better performance than the current state-of-the-art
kinship-verification results on all the databases. Comparative analysis is also
performed with algorithms such as the multiview neighborhood repulsed met-
ric learning (MNRML) [37], discriminative multimetric learning (DMML) [38],
and discriminative model [39].
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TABLE 6.2
Kinship-verification accuracy (%) on Cornell kinship data set with FS, FD,
MS, and MD kin relations

Father– Father– Mother– Mother–
Method Son Daughter Son Daughter

MNRML [37] 74.5 68.8 77.2 65.8

DMML [38] 76 70.5 77.5 71.0

KVRL-SDAE 85.0 80.0 85.0 75.0

KVRL-DBN 88.3 80.0 90.0 72.5

TABLE 6.3
Kinship-verification accuracy (%) on KinFaceW-I and KinFaceW-II
databases with FS, FD, MS, and MD kin relations

(a) KinFaceW-I Data set

Father– Father– Mother– Mother–
Method Son Daughter Son Daughter

MRNML [37] 72.5 66.5 66.2 72.0

DML [38] 74.5 69.5 69.5 75.5

Discriminative Model [39] 76.4 72.5 71.9 77.3

KVRL-SDAE 95.5 88.8 87.1 96.9

KVRL-DBN 96.2 89.6 87.9 97.6

(b) KinFaceW-II Data set

Father– Father– Mother– Mother–
Method Son Daughter Son Daughter

MNRML [37] 76.9 74.3 77.4 77.6

DML [38] 78.5 76.5 78.5 79.5

Discriminative Model [39] 83.9 76.7 83.4 84.8

KVRL-SDAE 94.0 89.2 93.6 94.0

KVRL-DBN 94.8 90.8 94.8 95.6

TABLE 6.4
Kinship-verification accuracy (%) on child-young parent and child-old
parent sets of UB kinship data set

Method Child–Young Parents Child–Old Parents

MNRML [37] 66.5 65.5

DMML [38] 74.5 70.0

KVRL-SDAE 85.9 84.8

KVRL-DBN 88.5 88.0
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TABLE 6.5
Kinship-verification accuracy (%) on WVU kinship data set on FS, FD,
MS, MD, BB, BS, and SS kin relations

Method FS FD MS MD BB BS SS

KVRL-SDAE 80.9 76.1 74.2 80.7 81.6 76.5 80.3
KVRL-DBN 85.9 79.3 76.0 84.8 85.0 79.9 85.7
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FIGURE 6.5
ROC curves for kinship verification with KVRL-DBN and KVRL-SDAE on
Cornell kinship data set.

6.3.4.1 Cornell kinship data set

Table 6.2 and the receiver operating characteristic (ROC) curve in Figure 6.5
summarize the results of the kinship verification on the Cornell kinship data
set [28]. It is observed that KVRL-DBN yields the highest kinship verification
for the four kin relationships in the database. It outperforms existing MNRML
[37] and DMML [38] techniques for kinship verification. In this database, kin
pairs belonging to Mother–Son relation are correctly detected with highest
accuracy of 90.0% by the KVRL-DBN framework. Similarly, the KVRL-SDAE
framework detects Mother–Son kin pairs with 85.0% kinship-verification
accuracy.

6.3.4.2 KinFaceW-I and KinFaceW-II databases

The results with KinFaceW-I and KinFaceW-II [37] databases are shown in
Table 6.3 and the ROC curve is shown in Figure 6.6. The KVRL-SDAE and
KVRL-DBN framework outperform the existing MRNML [37], DML [38], and
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FIGURE 6.6
ROC curves for kinship verification with KVRL-DBN and KVRL-SDAE on
(a) KinFaceW-I database and (b) KinFaceW-II database.

Discriminative Model [39] techniques for kinship verification on KinFaceW-I
and KinFaceW-II databases. KVRL-DBN yields the highest kinship verifi-
cation of 96.9% for Mother–Daughter relation on the KinFaceW-I database.
For the KinFaceW-II database, the KVRL-DBN achieves 94.0% accuracy for
Father–Son and Mother–Daughter relations. A general trend appears for the
KinFaceW-I and KinFaceW-II databases where the images of same-gender
kin perform better than different-gender kin images. Thus, Father–Son and
Mother–Daughter kinship relations have a higher kinship verification accuracy
than Father–Daughter and Mother–Son.

6.3.4.3 UB KinFace database

UB KinFace database [29] consists of groups of images, which includes images
of children, young parents, and old parents. The database is built on the
hypothesis that images of parents when they were young are more similar
to images of children, as compared to images of parents when they are older.
Results of comparative analysis of kinship-verification performance on the two
sets of this database are reported in Table 6.4 and Figure 6.7. It is observed
that the kinship-verification performance is better in child–young parent kin
pair (Set 1) as compared to child–old parent kin pair (Set 2) where there is a
significant age gap between the kin pairs.

6.3.4.4 WVU kinship database

WVU kinship database [44] consists of seven kin relations: Father–Son,
Father–Daughter, Mother–Son, Mother–Daughter, Brother–Brother, Brother–
Sister, and Sister–Sister. The kinship-verification performance of the
KVRL-SDAE and KVRL-DBN frameworks on WVU kinship database is sum-
marized in Table 6.5 and Figure 6.8. The performance of the KVRL-DBN
framework is higher than the KVRL-SDAE framework for all seven kin
relations. Similar to KinFaceW-I and KinFaceW-II databases, kin pairs
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FIGURE 6.7
ROC curves for kinship verification with KVRL-DBN and KVRL-SDAE on
Set 1 and Set 2 of UB KinFace database: (a) KinFaceW-I database and (b)
KinFaceW-II database: (a) UB-young parent and young child database and
(b) UB-old parent and young child database.

1

0.9

0.8

0.7

0.6

0.5

0.4

Tr
ue

 p
os

iti
ve

 ra
te

0.3

0.2

0.1

0

Kinship verification using DBN
Kinship verification using SDAE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive rate

FIGURE 6.8
ROC curves for kinship verification with KVRL-DBN and KVRL-SDAE on
WVU kinship database.

belonging to same-gender have greater kinship-verification accuracy as com-
pared to different-gender kin pairs.

From all these experiments, it is observed that the best performance is
obtained with hierarchical two-stage DBN (KVRL-DBN). One reason for such
a performance can be that the DBNs’ hidden layers are able to better model
kinship. Being a probabilistic generative model, it may be learning the subtle
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similarities that occur in local regions among kin pairs. This reinforces that an
unsupervised representation learning model using both global and local face
regions yields better performance for kinship verification. We also observe an
improvement in kinship-verification performance when dropout is used in the
second stage of the model.

6.4 Self-Kinship Problem (Age-Invariant Face
Verification)

From an anthropological point of view, kinship information is based on the
degree of genetic similarity between two individuals. Thus, it is logical to
expect that an ideal kinship-verification algorithm will give perfect kinship-
verification accuracy if the input pair of face images belong to the same
individual. This pair of images belonging to the same individual can also be
separated by age gap. Therefore, the classical age-invariant face-verification
research problem [62,63] can be considered under the umbrella of kinship ver-
ification. This scenario is identified as the problem of self-kinship where the
objective is to identify the age-progressed images of the same individual as kin.
Figure 6.9 illustrates the problem of self-kinship where the age-progressed face
images of an individual can be verified using kinship-verification algorithms.

10-year age gap

FIGURE 6.9
An example of age-progressed pair of images of an individual. This is also an
example of self-kinship because these age-separated face images can be verified
using kinship verification algorithms.
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6.4.1 Self-kinship experimental results

To validate the efficacy of the KVRL framework in this situation, the exper-
iment is performed on two databases: FG-Net database [64] and UB KinFace
data set [29] using the KVRL-SDAE and KVRL-DBN algorithms. The FG-Net
database consists of 1002 images from 82 subjects with an average of 12 images
per subject. The database consists of 5,808 positive inter-class samples and
12,000 negative inter-class samples. Three-fold cross-validation is performed
similar to Lu et al. [37] where each subject appears in the training or testing
set exclusively. The UB database also consists of images of parents when they
were young and when they were old. The database consists of 200 images of in-
dividuals in each of the aforementioned scenarios. A three-fold cross validation
is conducted with each pair present either in the training or testing data set.

Figure 6.10 shows the results obtained from the self-kinship experiment.
An equal error rate (EER) of 14.14% is observed on the UB data set, whereas
an EER of 16.45% is observed on the FG-Net Database using SDAE in the
KVRL framework. A further reduction in EER of 10.95% on the UB data set
and 15.09% on the FG-Net Database is observed when using the DBN model
in the KVRL framework. This result is considerably better than the 22.5%
observed by the current state-of-the-art algorithm for kinship verification:
MNRML [37]. These algorithms outperform the previous best algorithm in
the age-invariant face-verification (self-kinship) experiment for the FG-Net
Database [65] and performs equally good on the UB KinFace database [29].

1

0.9

0.8

0.7

0.6

0.5

0.4

Tr
ue

 p
os

iti
ve

 ra
te

0.3

0.2

0.1

0

Self kinship UB set using DBN
Self kinship FG-Net set using DBN
Self kinship UB set using SDAE
Self kinship FG-Net set using SDAE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive rate

FIGURE 6.10
ROC curves demonstrating the performance of self-kinship (age-invariant face
verification) using the KVRL algorithm.
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6.5 Summary and Future Research

Kinship verification has been explored in anthropological, neuroscience, and
computer-vision research domains. Kinship-verification research using facial
images has real-world applications such as locating missing relatives and
validating kinship claims during asylum-seeking process. Kinship verification
can be delineated as two distinct, but related problems: (1) kinship verifi-
cation between different individuals and (2) self-kinship, which characterizes
age-invariant face verification associated with the same individual. Different
approaches have been proposed for kinship verification such as metric learn-
ing, features-based solutions, and deep learning algorithms. In this chapter,
we examine the efficacy of two deep learning algorithms: DBNs and SDAEs
in the KVRL framework [44]. KVRL is a two-stage hierarchical representa-
tion learning framework that uses the trained deep learning representations
of faces to calculate a kinship similarity score. We demonstrate that these
kinship verification approaches outperform recently reported results on five
different kinship data sets publicly available. The results of self-kinship using
the KVRL framework are reported and outperforms the current state-of-the-
art kinship algorithms using the FG-Net and UB KinFace databases.

The current research focuses on lineal kin relationships such as parents,
children, and grandparents. However, there is no research that exists when
the traditional kin relationship is broadened to include collateral extended
family such as uncle, aunts, cousins, nephews, and nieces. This kin verifica-
tion can become even more complex when the genetic link among kin may
be weak, especially when families include half-brothers, half-sisters, or step-
parents. Additionally, the majority of the techniques proposed for kinship
verification have been developed for facial images. There is a dearth of re-
search for kinship verification in videos. Kinship verification in unconstrained
videos can be highly beneficial for surveillance purposes. Such systems can be
used at border control to prevent illegal child trafficking by validating relation-
ships between parents and their children using surveillance videos. Addressing
such research scenarios will be challenging and will need new approaches to
study how information learned in one domain, that is well understood, can
be represented or transformed to another domain to accurately identify such
kin relationships that may not be easily accomplished even through DNA
testing.
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7.1 Introduction

Effective recognition hinges on the ability to map inputs to their respective
class labels despite exogenous input variations. For example, the associated
identity label from a face-recognition system should not change because of
variations in pose, illumination, expression, partial occlusion, or accessories.
Deep neural networks have been hailed for their ability to deliver state-of-the-
art recognition performance, even under noticeable input variations. Although
raw outputs from end-to-end networks are commonly used in idealized bench-
mark settings (e.g., on the ImageNet classification challenge [1]), realistic tasks
seldom use actual network outputs because training a full network is time-
consuming, and classes in the application at hand are often not so rigidly
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defined as in benchmark settings. Moreover, fusing additional information
through back-propagation is sometimes nontrivial.

Particularly in biometrics applications, a network that is trained on many
examples for a specific modality is commonly used as a feature extractor
by taking feature representations from lower layers of the network. During
enrollment, samples from the gallery are submitted to the network, and the
output feature vectors are used for template construction. These templates
may be constructed in a variety of ways (e.g., as sets of raw feature vectors
or aggregations thereof [2,3]). At match time, probe samples are compared to
the gallery by taking the cosine distance to gallery templates [3]. Critically,
operational constraints often require fast enrollment, which precludes training
an end-to-end network and significantly reduces the likelihood that samples
in the gallery will be from the same classes as samples in the training set;
many face-recognition protocols even require that identities in training and
enrollment sets have no overlap.

Unlike the outputs of an end-to-end network, in which learned classifi-
cations exhibit invariances to exogenous factors in the input (they have to,
assuming reasonable recognition accuracy), “there is no concrete reasoning
provided [in the literature] on the invariance properties of the representations
out of the fully connected layers,” [4] nor is there any intuitive reason to as-
sume that deep features prior to the final fully connected layer will exhibit such
invariances because typical loss functions have no explicit constraint to enforce
such invariance. Although some exogenous properties of input samples are pre-
sumably attenuated by the network because these higher-level abstractions
still offer quite good recognition performance, there is still significant motiva-
tion to discern what type of exogenous information resides in these features.

As a primary motivation, note that lack of invariance is not necessarily a
bad thing: exogenous information preserved from the input is partially what
allows deep representations to generalize well to other tasks. For example,
popular approaches to facial attribute classification use features derived from
networks trained on identification tasks [5]. A truly invariant representation
would preclude information about attributes that are unrelated to identity
from being learned in such a manner (e.g., Smiling); yet until recently, this
was the state-of-the-art facial attribute classification approach and is still
widely used. The new state-of-the-art [6,7] leverages attribute data directly,
precisely for this reason. More generally, many learning approaches to task
transfer and domain adaptation often make the implicit assumption that a
feature space derived from a different task or a different domain will work
well for the task or domain at hand, provided that enough data have been
used to derive the feature space, with the actual transfer learning conducted
via classifiers within this feature space. We show that such an assumption may
or may not be true depending on the information content of the feature space.

A secondary motivation for understanding the nature of exogenous
information embedded in deep features—namely, the desire to create more
invariant representations—becomes important when a truncated network is
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used to enroll novel samples not present in the training set, specifically if those
samples constitute novel identities. The original end-to-end network is opti-
mized so that classes constituted by the original training samples separate well;
even if the underlying deep features are not invariant to exogenous factors,
the last layer will combine these deep features into an overall classification.
Because we ignore the last layer during enrollment, variations resulting from
exogenous factors could end in confusion between classes for newly enrolled
samples. Thus, there is reason to explore whether we can attain more invari-
ant deep feature spaces because this could increase performance scalability of
applied machine learning systems, especially for biometric recognition.

In this chapter, we conduct a formal exploration of the invariant and non-
invariant properties of deep feature spaces. Although there has been related
research conducted in the machine-learning and computer-vision communi-
ties in areas of domain-adaptation and task-transfer learning, there has been
little direct concentration on this topic, in part we surmise, because of the
already impressive recognition rates and representational performance that
deep neural networks provide. We analyze two deep representations. The
first, geared toward realistic applications, is the combined output of mul-
tiple face-recognition networks [8,9], which is an approach that achieved
state-of-the-art accuracy on the IJB-A data set [10]. As indicated in Figure 7.1,

Input
image

Truncated
network

Deep
features

Classifier/
regressor Result

Smiling:
0.9

Smiling
SVM

Face-
recognition

network

Pose
regressor

Pose
+2°

Pose
−58°

Smiling:
0.2

FIGURE 7.1
Classifying image properties from deep features. Nonidentity-related proper-
ties such as smiling or pose variations should not affect a good face-recognition
system’s output. So, people expect that deep features extracted from trun-
cated face-recognition networks are invariant to these properties. But they
are not. We demonstrate this lack of invariance by using simple classifiers
or regressors to predict these image properties from the deep features of an
identification network with high reliability.
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we demonstrate that from this representation we can not only accurately pre-
dict pose, but we can also predict facial attributes, despite an added triplet-loss
metric learning phase atop these representations. With respect to attribute
classification, we find that classifiers trained in this deep feature space—
which is purely identity derived—achieve near state-of-the-art performance on
identity-related attributes such as gender and, surprisingly, they are also able
to achieve impressively high performance on nonidentity-related attributes
(e.g., Smiling), which an invariant representation would have down-weighted
or pooled out. The second deep representation that we employ is the canon-
ical LeNet/MNIST architecture [11], with which we attempt several different
training procedures to enforce invariant representations. Our analysis demon-
strates that we are indeed able to extract a more invariant feature space with
little accuracy loss, but many noninvariances still remain.

7.2 Related Work

Face biometric systems have seen remarkable performance improvements
across many tasks since the advent of deep convolutional neural networks.
Taigman et al. [12] pioneered the application of modern deep convolutional
neural networks to face-recognition tasks, with DeepFace, the first network to
reach near-human verification performance on the Labeled Faces in the Wild
(LFW) benchmark [13]. In their work, they used an external image preprocess-
ing to frontalize images and trained their network on a private data set of 4.4
million images of more than 4000 identities. Later, Oxford’s Visual Geometry
Group (VGG) publicly released a face-recognition network [2] that omits the
frontalization step, while training the network with a relatively small data
set containing 95% frontal and 5% profile faces. Parkhi et al. [2] also imple-
mented a triplet-loss embedding and demonstrated comparable performance
to [12] on LFW despite the lower amount of training data. Lately, the IJB-A
data set and challenge [10], which contains more profile faces, was proposed.
Chen et al. [3] trained two networks on a small-scale private data set con-
taining more profile faces than the DeepFace and VGG training sets. Using
a combination of these two networks and a triplet-loss embedding that was
optimized for comparing features with the dot product, they achieved the cur-
rent state-of-the-art results on the IJB-A challenge. The combination of these
deep features is the basis for our analysis in Section 7.3.

Facial-attribute classification using deep neural network was pioneered by
Liu et al. [5]. The authors collected a large-scale data set (CelebA) of more
than 200,000 images, which they labeled with 40 different facial attributes.
They trained a series of two localization networks (LNets) and one
attribute classification network (ANet). The ANet was pretrained for a
face identification task and fine-tuned using the training partition of CelebA
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attribute data. Finally, they trained individual support vector machines
(SVMs) atop the learned deep features of the penultimate layer of their ANet
to perform final attribute prediction. Wang et al. [14] pretrained a network
using data that they collected themselves via ego-centric vision cameras and
augmented that data set with ground-truth weather and geo-location informa-
tion. They then fine-tuned it on the CelebA training set. Although previous
approaches that advanced the state-of-the-art on CelebA relied on augmented
training data sets and separate classifiers trained atop deep features, Rudd
et al. [6] recently advanced the state-of-the-art beyond these by using an
end-to-end network trained only on the CelebA training set, but with a multi-
task objective, optimizing with respect to all attributes simultaneously. Their
Mixed Objective Optimization Network (MOON) is based on the VGG topol-
ogy and also introduces a balancing technique to compensate for the high bias
for some attributes in CelebA. Finally, Günther et al. [7] extended the ap-
proach in [6] to accommodate unaligned input face images using the Align-
ment Free Facial Attribute Classification Technique (AFFACT), which is able
to classify facial attributes using only the detected bounding boxes (i.e.,
without alignment). This network provides the current state-of-the-art on
the CelebA benchmark using no ground-truth landmark locations from the
test images. In this chapter, we investigate a network that is a clone of
the AFFACT network, which was trained using the same balancing method
presented in [6].

The use of deep learned representations across visual tasks, including the
aforementioned face biometric, can be traced back to the seminal work of
Donahue et al. [15], in which the authors used a truncated version of
AlexNet [16] to arrive at a Deep Convolutional Activation Feature (DeCAF)
for generic visual recognition. Several efforts to remove/adapt variations in
features that transfer across domains or tasks have been conducted, includ-
ing some that are similar in nature to our research [4,17,18]. Li et al. [17]
introduced a multiscale algorithm that pools across domains in an attempt
to achieve invariance to out-of-plane rotations for object-recognition tasks.
Mopuri and Babu [4] formulated a compact image descriptor for semantic
search and content-based image retrieval applications with the aim of achiev-
ing scale, rotation, and object placement invariance by pooling deep features
from object proposals. Tzeng et al. [18] formulated a semi-supervised domain
transfer approach that, during fine-tuning to the target domain, uses a new
loss-function that combines standard softmax loss with a “soft label” distilla-
tion (cf. [19]) to the softmax output mean vector and a domain confusion loss
for domain alignment, which iteratively aims to first optimize a classifier that
best separates domains and then optimizes the representation to degrade this
classifier’s performance. The approach by Tseng et al. [18] is similar to one
of our methods in Section 7.4, but the goal is different; their approach aims
to transfer domains within and end-to-end deep network, whereas ours aims
to obtain an invariant representation for training lighter-weight classifiers on
new samples from an unspecified target domain.



158 Deep Learning in Biometrics

The use of pretrained deep representations is not new to face biomet-
rics, but investigating the content of these deep features has only recently
attained interest. Particularly, Parde et al. [20] investigated how well proper-
ties of deep features can predict nonidentity-related image properties. They
examined images from the IJB-A data set [10] and concluded in the abstract
of [20] that “DCNN features contain surprisingly accurate information about
yaw and pitch of a face.” Additionally, they revealed that it is not possible to
determine individual elements of the deep-feature vector that contained the
pose information, but that pose is encoded in a different set of deep features for
each identity. Our work builds on theirs by investigating pose issues in much
greater detail as well as exploring even more generic invariance for attribute-
related information content across identity-trained deep representations.

7.3 Analysis of Face Networks

A typical example of a face image-processing network is a face-recognition
network [2,3]. These networks are usually trained on large data sets using
millions of images of thousands of identities, with the objective of minimizing
negative log likelihood error under a softmax hypothesis function. Choice of
training set is often made to capture wide variations both within and between
identities, so training sets usually contain images with a wide variety of image
resolutions, facial expressions, occlusions, and face poses. The resulting net-
work is generally able to classify the correct training identities independently
of the presence of these traits in the images.

Contrary to many closed-set image classification tasks, one characteristic
of face-recognition systems in practice is that the identities in the training
and test sets differ. As previously mentioned, this partially stems from the
fact that training a deep neural network is computationally expensive, but in
deployment settings, novel identities must be enrolled frequently. Hence, the
softmax output for a given test image provides little value because it saturates
with respect to training identities. Although one could train a secondary clas-
sifier atop softmax outputs, this is typically not done because the saturating
effects remove potentially useful information. Instead, common practice is to
use the output of the presoftmax layer of the network as a feature vector to
represent an input face image. We will refer to vectors within this vector space
as deep features.

To compute the similarity between two faces, the deep features are com-
pared using some sort of distance function or classifier (e.g., Euclidean distance
[2], cosine distance [3], and Siamese networks [12]). To increase classification
accuracy, a metric-learned embedding is added (e.g., triplet loss [2,9] or joint
Bayesian [12]), which projects the deep features into a space that is trained to
increase the similarity of deep features from the same identity, while decreasing
the similarity of deep features extracted from different identities. Because of
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the enormous boost in face-recognition performance that these sorts of sys-
tems have provided, a prevailing, albeit disputed and factually ungrounded,
belief is that the deep features are mostly independent of image parameters
that are not required for face recognition. In this section, however, we show
that we are able to classify nonidentity-related facial attributes as well as face
pose from the deep features—both before and after triplet-loss embedding—
demonstrating that deep features maintain significant information in their
representation about image parameters that are independent from identity.

7.3.1 Attribute prediction experiments

To investigate the independence of deep features from nonidentity-related
facial attributes, we performed experiments on the CelebA data set [5], which
contains around 200,000 face images, each of which is hand-annotated with
40 binary facial attributes. We obtained the deep features (832-dimensional
before and 256-dimensional after triplet-loss embedding) and the according
hyperface annotations from Chen et al. [3] for all images of the CelebA data
set. Using the deep features from the CelebA training set, we trained 40 lin-
ear SVMs—one for each attribute—and optimized the C parameter for each
attribute individually using the CelebA validation set. Because of the large
imbalance of many of the attributes within the CelebA data set (cf. [6]; for
example approximately 98% of the images lack the Bald attribute), we trained
all SVM classifiers to automatically balance between positive and negative
labels. On the test set, we predicted all 40 attributes and compared them
with the ground-truth labels from the data set. We split the errors into false-
positives and false-negatives, where false-positives in this case correspond to
an attribute labeled as absent, but predicted to be present.

To get an idea how well the attributes can be predicted, we compare
predictions with a version of the state-of-the-art AFFACT network [7] that
was trained using the attribute balancing proposed [6]. The results of this
experiment are shown in Figure 7.2, where we have split the 40 attributes
into identity-related, -correlated, and -independent. For identity-dependent
attributes such as Male, Pointy Nose, and Bald, we can see that the pre-
diction from the deep features results in approximately the same error as
AFFACT’s. Hence, these attributes are well-contained in the deep features,
despite the fact that the network was not trained to predict these attributes.
Exceptions are attributes like Narrow Eyes and Oval Face. These attributes
have a high overall prediction error, and we hypothesize that they may have
been difficult for data set providers to consistently label.

Identity-correlated attributes (e.g., hair style and hair color) are usually
stable, but might change more or less frequently. These attributes are gen-
erally more difficult to predict from the deep features. Although predictions
from the deep features are still better than random, the associated errors are
considerably higher than those corresponding to classifications made by the
AFFACT network. Note that the features after the triplet-loss embedding
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FIGURE 7.2
Attribute prediction from deep features. The error in attribute prediction from
the deep features before and after triplet-loss embedding is displayed, split
into false-negatives (attributes labeled as present, but predicted as absent)
on the left and false-positives (absent attributes predicted as present) on the
right. For comparison, the AFFACT network results show the state-of-the-art
attribute prediction. Attributes are loosely grouped into identity-related,
identity-correlated, and identity-independent subsets.

predict the identity-correlated attributes worse than before the embedding.
Interestingly, for some attributes like Gray Hair or Sideburns we can observe
a difference in false-positives and false-negatives. Although we can predict the
absence (low false-positives) of these attributes similarly or even better than
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AFFACT, the prediction of the presence (low false-negatives) of them is re-
duced for the deep features.

Finally, the identity-independent attributes such as Smiling, Blurry, and
Wearing Necklace are far more difficult to predict from the deep features
than from the AFFACT network, but the classification is still noticeably bet-
ter than random. This suggests that identity-unrelated attribute information
is still contained within the deep features because otherwise both the false-
positive and false-negative error rates should be 50%. Hence, the prediction
capability of deep features for those attributes is reduced when training the
network to classify identity, and even more reduced after triplet-loss embed-
ding, but some attributes like Wearing Hat or Eyeglasses can still be pre-
dicted with very high accuracy. This ultimately means that although some
nonidentity-related information corresponding to some attributes is attenu-
ated during network training and triplet-loss embedding, other nonidentity-
related information is preserved, and we do not arrive at a feature space that
is truly independent of nonidentity-related attribute information.

7.3.2 Pose-prediction experiments

When the pose of a face changes from frontal to full profile, its visual appear-
ance alters dramatically. Two faces of different identities in the same pose are
generally more similar than the face of the same identity in different poses.
Hence, the network needs to learn a representation that is able to differenti-
ate poses from identities, a task that has been shown to be difficult for non-
network–based algorithms [21]. When training the network using softmax, the
last layer can combine different elements of the deep features to obtain a rep-
resentation that is independent of pose. In practice this means that the deep
features may very well contain the pose information, and it is, thus, possible
to predict the pose from the deep features.

We performed another experiment on the CelebA data set, in which we
attempt to predict pose from deep features, using the same splits in training,
validation, and test sets. Because the employed networks were trained with
using horizontally flipped images, there is no way to differentiate between
positive and negative yaw angles, and hence, we used the absolute yaw angle as
target. Because the CelebA data set does not provide the pose information, we
took the yaw angles automatically estimated by the state-of-the-art hyperface
algorithm [3] as target values for the pose prediction. Note that the hyperface
yaw angle estimates are relatively precise for close-to-frontal images, but they
become unreliable for larger yaw angles greater than 45 degrees.

To determine if pose information is generally contained in deep features—
not just the deep features of Chen et al. [3]—we extracted the penultimate
layer from two more networks: the VGG face network [2] (4096-dimensional,
layer FC7, post-ReLU) used for identity recognition and the AFFACT network
[7] (1000-dimensional) that was trained for facial-attribute prediction. Despite
the different tasks that the networks are trained for, intuition suggests that
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TABLE 7.1
Predicting pose from deep features. Results are given for the
pose-prediction experiments on the CelebA test set, using yaw
angles automatically extracted with the hyperface algorithm as
target values. Shown are the average absolute difference between
predicted and hyperface yaw angles in degrees. The count of images
in the according hyperface yaw range (shown left) are given in the
rightmost column

Yaw AFFACT VGG Deep feat. Triplet-loss Count

0–15 6.1 7.7 8.1 10.6 14,255
15–30 4.6 6.3 5.8 7.1 4,527
30–45 5.6 7.2 5.7 6.7 872
>45 9.1 11.4 10.3 13.9 268
Total 5.8 7.4 7.5 9.7 19,922

all of the networks should have learned their tasks independently of face pose
because changes in pose do not change the target labels. For feature extraction,
images of the CelebA data set were cropped according to the detected hyper-
face bounding box∗ and scaled to resolution 224×224 (cf. [7]), which happens
to be the input resolution for both VGG and AFFACT.

For each type of deep feature, we trained a linear regression model using the
CelebA training set. Using this model, we predicted the yaw angle contained
inside the according deep features and compared it with the hyperface yaw
angle. The results given in Table 7.1 display the average distance between the
two values in degree. Interestingly, a global trend is that the yaw angle in
half-profile pose (from 15 to 45 degrees) could be predicted with the highest
precision, whereas close-to-frontal pose angles seem to be a little more difficult.
This suggests that poses up to 15 degrees do not make a large difference
for feature extraction, possibly because of the over-representation of data in
this range. On closer examination of the deep feature types, the outputs of
the penultimate layer of the AFFACT network seem to be least stable to
pose variations—potentially because how the network was trained—although
the deep features from Chen et al. [3] and VGG [2] have higher prediction
errors, which are once more superseded by the triplet-loss-projected versions
of [3]. Interestingly, we observe the general trend that deep features with more
elements (4096 for VGG and 1000 for AFFACT) contain more yaw information
than shorter vectors (832 before and 256 after triplet-loss embedding). Given
that the average pose-prediction errors are generally below 10 degrees, we can
conclude that the yaw angle (and we assume that the same is true for pitch
and roll angles) can still be predicted from all kinds of deep features, and

∗Both the VGG and AFFACT networks have shown to be stable to different scales and
rotation angles. Proper alignment of the face is, hence, not necessary for either of the two
networks.
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hence, the deep features are not invariant to pose. Finally, choosing nonlinear
basis functions could almost certainly enhance pose-prediction accuracy, but
the fact that we are able to do so well without them already demonstrates the
presence of noticeable pose information within the deep features of all three
networks.

7.4 Toward an Invariant Representation

In this section, we explore the problem of formulating an invariant repre-
sentation. We perform this exploration using perturbations to the canonical
handwritten digit-classification data set MNIST [11], augmenting the familiar
LeNet topology that is shipped as an example with the Caffe framework [22].

7.4.1 Preliminary evaluation on rotated MNIST

Because we are interested in investigating the deep-feature representation, we
do not use the final softmax output of the network during evaluation. This
is in contrast to common practice for the MNIST data set. Instead, we train
the network using a softmax loss to learn the representation, but then remove
the final layer (softmax and ip2) of the network to investigate the output
of the penultimate ip1 layer. This is analogous to using the penultimate rep-
resentation for enrollment and recognition in a face-recognition network.

The task that we aim to accomplish with this set of experiments is to
evaluate the invariance of the ip1 layer to rotations on the inputs and to
explore how to enforce such invariance. As a baseline approach, we artificially
rotated the MNIST images using seven different angles in total: −45◦, −30◦,
−15◦, 0◦, 15◦, 30◦, and 45◦. We limited our rotations to this range to avoid
legitimate confusions of digits induced by rotation (e.g., 9 and 6). Using the
default training images, augmented with each rotation, we trained the stan-
dard LeNet network with the default solver until convergence was attained on
a similarly augmented form of the validation set. Using the softmax output,
we obtained a final classification accuracy of 98.98% on the augmented form
of the test set. This result indicates that the network was able to learn to
classify rotated images successfully.

Using the learned representation, we truncate the network after the ip1

layer’s ReLU activation function, extracting 500-dimensional feature vectors
for all images rotated at all angles. To represent each of the classes, we simply
average the ip1 feature vectors (which we call the Mean Activation Vector
[MAV]) of all training images of a class—an approach similar to that com-
monly used in face pipelines [2]. We ran a simple evaluation on the ip1 fea-
tures of the test set by computing the cosine similarity to all 10 MAVs; if
the correct class had highest similarity, we consider the sample to be classi-
fied correctly. Using this approach, the total classification accuracy dropped
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to 89.90%, which is a noticeable decline from using softmax classifications.
A more detailed comparison between the two models is given in Figure 7.4.

Momentarily ignoring the decline in accuracy, a more fundamental ques-
tion arises: has training across rotations led the representation to become
invariant to rotation angle (i.e., is there noticeable information regarding the
representation embedded within ip1)? As a first step in answering this ques-
tion, we train a linear regressor for each label in the training set and attempt
to predict rotation angle from the extracted ip1 features. As the regression
target, we use the known rotation angle. On the test set, we classified the
ip1 features with the regressor of the corresponding label. The mean and the
standard deviation—averaged over all 10 labels—are shown in light-gray color
color in Figure 7.3. Even though the original images have an inherent rota-
tion angle—people slant hand-written digits differently—we can reasonably
predict the angle with a standard error of around 15 degrees.

Noting our ability to predict pose angle with reasonable accuracy, we then
computed an MAV of ip1 features of each label for each angle separately
from the training set. At test time, we estimated the angle of the test ip1

feature and computed the similarity to all 10 MAVs with that angle. Using
this approach, our average classification accuracy increased to 95.44%, cf.
Figure 7.4. Hence, exploiting information from exogenous input features con-
tained in the ip1 representation actually allows us to improve classification
accuracy.
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Angle prediction. This figure shows the average results of predicting the
angles used to rotate the MNIST test images from the ip1 features of LeNet.
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Digit-classification errors. Classification errors are given for several techniques,
individually for each digit and as an average. Techniques that use the Mean
Activation Vector (MAV) are shown with fill markers, whereas softmax-
approaches are given in black and only for comparison. For LeNet-MAV, the
MAV on the original LeNet is used, evaluation is performed as the class with
the lowest cosine distance. For LeNet-per-angle-MAV, one MAV per angle is
computed on the training set, and the angle is estimated for test images, and
evaluation is performed using only the MAVs for this angle. The µ-LeNet
was trained using the corresponding MAV as target, evaluation is similar to
LeNet-MAV. The PAIR-LeNet was trained using pairs of images, evaluation
is similar to LeNet-MAV.

7.4.2 Proposed architectures to enhance invariance

In this subsection, we modify LeNet in two distinct ways, for which intu-
ition suggests that it would lead to a representation that is more invariant
to exogenous input variations. The first such architecture, µ-LeNet, uses a
distillation-like approach by regressing to the mean ip1 vector across each
class at the ip1 layer of the truncated LeNet. The second architecture, PAIR-
LeNet, introduces a Siamese-like topology to encourage two distinct inputs to
have the same representation.

7.4.2.1 The µ-LeNet

Distillation, introduced by Hinton et al. [19], was designed for the purpose
of “knowledge transfer” between end-to-end networks, generally of different
topologies. The procedure involves softening the output softmax distribution
of the network to be distilled and using the softened distribution outputs as
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soft labels for the distillation network. Using this as motivation, we use a
related, but different approach, in which we aim to achieve a more invariant
representation. Namely, using the MAV of the ip1 output of a trained LeNet,
we train a new µ-LeNet ip1 representation by using the MAVs as regression
targets. To stabilize and speed up the learning process, we also performed a
min-max normalization on the feature space from 0 to 1 as a preprocessing
step.

Using cosine distance with respect to the MAV, our recognition rate was
97.18%, which was, noticeably better than using the ip1 layer under the origi-
nal MNIST topology, cf. Figure 7.4. On the other hand, although a decrease in
angle classification success is noticeable, this decrease is very slight, as shown
in dark-gray color in Figure 7.3. The µ-LeNet also took significantly longer
time to train than the typical LeNet topology.

7.4.2.2 The PAIR-LeNet

The µ-LeNet blatantly attempts to force input images to their respective
class’s mean ip1 representation output from a trained LeNet. A different
approach is to consider pairs of images at a time and optimize their repre-
sentations to be as identical as possible. We refer to this approach as PAIR
because it uses image pairs with Perturbations to Advance Invariant Represen-
tations. The idea is depicted in Figure 7.5 and is similar to a Siamese network
topology. We trained the network on the rotated MNIST training set using
randomized pairs of rotations until convergence was attained on the validation
set. The classification rate of the end-to-end network on the augmented test
set was 99.02%. Using cosine distance with respect to each label’s MAV, we
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FIGURE 7.5
PAIR network topology. A generalized schematic of the Perturbations to
Advance Invariant Representations (PAIR) architecture. Pairs of training
images are presented to a network with different losses, but shared weights.
Conventional softmax loss is used for both of the input images, then Euclidean
loss between the activation vectors of the two images is added. This aims to
force a similar representation between image pairs of the same class.
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obtained a recognition rate of 94.21% in the derived ip1 feature space, cf.
Figure 7.4. As shown in black color in Figure 7.3, angle-classification success
decreased, but this decrease was only slight. This suggests that, although the
topology learns a representation that is useful for recognition, information
about rotation angle still resides in the representation.

7.4.3 Analysis and visualization of the proposed
representations

Our MNIST experiments in the previous section demonstrate that we are
able to obtain marginal improvements with respect to rotation invariance, but
contrary to our expectations, we were suprised how small the improvements
are. In this section, we empirically analyze the feature spaces learned by our
proposed approaches to better understand their properties.

Consider an idealized invariant representation designed to characterize the
10 digit classes from MNIST. One characteristic that we would expect the fea-
ture space representation to have is a rank no greater than 10. Thus, after
subtracting the mean feature vector of the data matrix and performing singu-
lar value decomposition, the vast majority of the variance should be explained
by the first singular vectors with the rest accounting for only minor noise.

In Figure 7.6, we plot the scree diagram for each of our proposed
approaches using ip1 layer vectors extracted from the rotated MNIST test
set as the data matrix for the singular value decomposition. From analyzing
the scree diagrams, we see that the µ-LeNet representation is approximately
rank-10, with little variance explained by subsequent components. This indi-
cates not only that the network has converged well on the training set, but
it also indicates that the training set seems to have similar characteristics to
the test set. Because the test set is basically balanced in terms of class labels,
the sharp degradation in singular values suggests either that their respective
singular vectors either do not represent the underlying digits, but rather con-
stituent parts of the underlying digits, or some digits are more difficult to
discriminate than others and require more variance to do so.

As a follow-up analysis, we performed heat-map visualizations, depict-
ing activations across the rotated test set. These heat maps are shown in
Figure 7.7. In each of the figures, digit classes are sorted in ascending order
(0 through 9) from left to right. Within each digit class, poses are sorted in
ascending order (−45◦ to 45◦). For all three of the feature spaces, we can
discern 10 modes corresponding to each of the digits, but the Raw-LeNet’s
feature space is far more scattered. Moreover, within each of the 10 modes,
we see a trend of amplification or attenuation moving from right to left. This
suggests a noticeable dependence on pose in the Raw-LeNet representation.
The µ-LeNet in Figure 7.6(b) exhibits far more stability in the relative value
of feature vector elements within a mode. The PAIR-LeNet representation
in Figure 7.6(c) fluctuates for a given element within a mode more than the
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FIGURE 7.6
Screen diagrams for derived LeNet feature spaces: (a) Raw LeNet, (b) µ-LeNet,
and (c) PAIR-LeNet. These screen plots depict the variance (singular value)
explained by the first 40 of 500 singular vectors from the test set data matrices.
Light-gray colored lines reflect the max number of singular vectors expected
under an ideal representation. All feature vectors were min-max normalized
to [−1, 1] for visual comparison.

µ-LeNet, resulting in noisier looking horizontal lines, but there is little visual
evidence of clear-cut dependence on pose. Especially for the µ-LeNet, the
fact that we see discernible horizontal line segments within each mode of the
data matrix suggests that remaining pose-related information is present in
low-magnitude noise.

Separate colorbars are shown for each plot in Figure 7.7 to get good rel-
ative visualization of the data matrices. Note that the Raw-LeNet’s features
are somewhat greater in intensity than the PAIR-LeNet. The µ-LeNet’s fea-
tures are noticeably smaller in magnitude than either Raw-LeNet or µ-LeNet
because of normalization required to get the distillation-like training to con-
verge. Note that the PAIR-LeNet has a much sparser feature space than either
of the other two architectures. We hypothesize that this is a result of the PAIR
architecture’s shared weights.
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FIGURE 7.7
Heat maps for derived LeNet feature spaces: (a) Raw LeNet, (b) µ-LeNet, and
(c) PAIR LeNet. These deep features were taken from the ip1 layer of the
network after the ReLU activation. Rows represent feature vector elements,
while columns correspond to samples from the rotated MNIST test set.

Another interesting question is: to what degree are individual feature vec-
tor elements associated with a particular class. To this end, we attempt to
block-diagonalize each of the data matrices by performing row operations so
as to maximize contrast. Specifically, given a M × N data matrix, where M
is the feature dimension and N is the number of samples with known labels,
we iterate through the M rows. For each unique label l, we assign error for
the ith feature vector element and the lth label as:

Eil =
N∑

j=1

Dij(1− I(yj , l))

DijI(yj , l)
, (7.1)

where I(·) is an indicator function that yields 1 if yj is equal to l and 0 other-
wise. Picking a cluster associated with the value of l for which Equation (7.1)
is minimized and assigning the ith row of the matrix to that cluster for all rows
(i = 1, . . . ,M), then vertically stacking the clusters from minimum to maxi-
mum l value yields the optimal block-diagonalization by the error measure in
Equation (7.1).
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FIGURE 7.8
Diagonalizations of the data matrices of LeNet: (a) Raw-LeNet, (b) µ-LeNet,
and (c) PAIR-LeNet. Like Figure 7.7, these deep features were taken from
the ip1 layer of the network after the ReLU activation. Rows represent fea-
ture vector elements, while columns correspond to samples from the rotated
MNIST test set. In contrast to Figure 7.7 which displays rows in order, rows
were reordered to best diagonalize the data matrix as per Equation (7.1).

The respective block-diagonalizations are shown in Figure 7.8. Although
we can see a clear-cut diagonal structure in all three of the plots, the
Raw-LeNet is far noisier than either the µ-LeNet or the PAIR-LeNet. The
block-diagnol structure of the PAIR-LeNet is faint because of sparsity, but
has the fewest high-intensity off-block diagonal elements. However, the few
off-block diagonal elements are highly saturated. Although the µ-LeNet archi-
tecture has a strong block diagonal, we see that certain feature vector elements
are easily confused between classes (e.g., those with high response for 3 and 5).
Interestingly, far more features have high response for 1 than any other class,
even though classes are relatively well distributed. In all three cases, however,
although there is clear-cut block-diagonal structure, the strong co-occurrences
of certain elements between classes suggest that enforcing saturation for a
given class requires higher-level abstractions.
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7.5 Conclusions and Future Work

The research and evaluations that we have conducted in this chapter sug-
gest not only that one should expect the presence of noninvariances in deep
feature spaces derived via common objective functions, but also that attempt-
ing to attenuate such noninvariances and simultaneously maintain recognition
performance is a challenging task, even with objective functions explicitly
designed to do so.

Generally, our analysis of the performance of face-attribute prediction
from face-identity–derived deep features suggests what we would expect:
that identity-related attributes tend to be more readily discriminated than
identity-correlated attributes, which are in turn more easily discriminated
than identity-independent attributes. However, the fact that second-stage clas-
sifiers were able to recognize all attributes with noticeably better than ran-
dom performance dictates that there is still some information about those
attributes contained in the deep-feature representations, and consequently,
that the deep features are sensitive to variations in these attributes. Also, the
fact that some identity-independent attributes (e.g., Wearing Hat or Wearing
Lipstick) were easily recognized suggests that—perhaps fundamentally—the
representational capacity to best recognize an identity necessarily carries in-
formation that is highly relevant to recognizing the presence or absence of
these nonidentity-related attributes.

With respect to predicting the pose of a face, we find that across several
network topologies trained for different tasks and on different data sets, pose
information can be accurately recovered, even with simple linear regressors.
We hypothesize that the reason the AFFACT and VGG network feature spaces
offered most readily predictable pose information may have something to do
with their lack of sensitivity to alignment, training across jittered data, and
the generally high dimensionality of the feature space. Future research to
ascertain which factors lead to pose discrimination could involve deepening
these networks and reducing dimensionality by bottlenecking the output. In
this chapter, we have not addressed how noninvariance changes as a result of
network depth, which is a relevant topic since adding layers to the network
literally adds layers of abstraction.

Both topology changes that we introduced to LeNet—the µ-LeNet and
the PAIR-LeNet—exhibited some characteristics that we would expect from
an invariant representation, but did not contribute noticeably to rotation-
invariance because our ability to recognize rotation barely diminished. Per-
haps variations resulting from rotation (and pose) are difficult to attenuate.
This would again be an interesting problem on which to explore the effects of
deeper representations. Another interesting experiment would be to analyze
the effects of using similar architectures to attenuate nonpose-related exoge-
nous input variations.
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Although the features extracted from the µ-LeNet still included informa-
tion about pose, the scree diagram in Figure 7.6(b) suggests that this in-
formation is contained only in the part that is not varying much (i.e. it is
not expressed strongly). Hence, as shown in Figure 7.4, this network achieved
the best cosine-based classification accuracy. However, because the MAVs are
identical between training and test set, this result is surely biased. Translating
this experiment to face recognition, the MAV would be computed over training
set identities, whereas evaluation would be performed on test set identities,
which are different. In future work, we will investigate a µ-network approach
in such a face recognition setting.

For the PAIR-LeNet, we chose to reduce representational differences only
between pairs of images. Although this reduced pair-wise distances in the fea-
ture space, it did not work well to reduce class-wise variance. An interesting
extension to the PAIR network would be to use several images of one class or
identity at the same time and try to reduce the variance over the batch. Per-
haps, with large enough batch size and images of homogeneous label per batch
randomly selected across the training set, we could further reduce variance in
the underlying deep feature space.
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8.1 Introduction

A correlation filter (CF) is a spatial-frequency array (equivalently, a template
in the image domain) designed from a set of training patterns to discriminate
between similar (authentic) and nonsimilar (impostor) match pairs. The CF
design goal is to produce a correlation output displaying a sharp peak at the
location of the best match from an authentic comparison and no such peak
for an impostor comparison. CFs have been proven to be useful in challeng-
ing image-matching applications such as object alignment [1], detection [2–4],
and tracking [5,6]. In this chapter, we will discuss the use of CFs for biomet-
ric recognition, when in verification scenarios there is limited training data
available to represent pattern distortions.

A biometric-recognition system functions by matching a new unknown
sample, referred to as a probe, with separate stored template(s), referred to as
the gallery. In identification scenarios (essentially asking the question, “Who
is this person?”), a probe sample is compared against a set of stored gallery
templates, and the biometric system assigns the probe the same identity as the
template resulting in the highest score. Under verification scenarios (asking the
question, “Is this person who he or she claims to be?”), a single probe sample

175



176 Deep Learning in Biometrics

is compared against the gallery corresponding to the claimed identity with a
preset threshold determining whether the probe is authentic or impostor (also
referred to as 1:1 matching). There are a large number of CFs [2,7–9] that have
been previously shown to perform well in biometric-recognition applications
like face [10], iris [11], periocular [12], fingerprint [13], and palm-print [14]
recognition.

The matching challenge is noticeably more difficult when only a single
image is available for the gallery template, for example, as in real-world
applications such as when matching crime-scene face images to face images
in surveillance videos and in several NIST biometric competitions [15–17]
designed to mimic such real-world scenarios. CFs can implicitly and efficiently
leverage shifted versions of an image as negative training samples. Therefore
CFs are better suited for the 1:l matching problem in comparison to other clas-
sifiers like support vector machines and random forests, which are designed to
discriminate between two or more classes. However, in challenging matching
scenarios (e.g., because of the presence of in-plane deformations, occlusions,
etc.), an authentic correlation output may be difficult to distinguish from
an impostor correlation output as shown in Figure 8.1. This failure occurs
because of lack of training data or discriminative content between the probe
and gallery. This problem is not new or unique to biometrics, and usual efforts
to address it include varying features, changing the method of recognizing a
peak (e.g., peak-to-sidelobe ratio, peak-to-correlation-energy, etc.), and filter
design. For example, the CF response of a trained maximum average corre-
lation height (MACH) [18] filter is highly dependent on the mean training
image, which may not always be a good representation of the authentic class.
Accordingly, variants of the MACH design were introduced as a possible solu-
tion [8,19–23], such as the extended MACH (EMACH) [20,24] that includes a
parameter to weight the bias from low-frequency components represented by
the mean training image.

In much of the traditional design and usage of CFs, the previous work has
focused specific attention on improving the discrimination ability of the result-
ing correlation outputs with the remainder (after the peak height or location
are extracted) of the correlation shape being discarded. In this chapter, we
will discuss and demonstrate a novel technique, known as stacked correlation
filters (SCFs), for improving the effectiveness of CFs by using the insight that
the expected shape of a correlation output for an authentic match pair is
supposed to be noticeably different from the CF output shape for an impos-
tor pair. Moreover, the process of identifying an authentic correlation shape
can be used to refine the correlation outputs after the initial matching for
improved discrimination.

The rest of this chapter is organized as follows. Section 8.2 provides a brief
review of CF design and Section 8.3 details an overview of the SCF architec-
ture. An examination of the effectiveness of the SCF method is provided in
Section 8.4 through experimentation and analysis, and Section 8.5 provides a
summary.
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8.2 Correlation Filter Background

As previously discussed, CFs represent a family of classifiers generally designed
for high-localization performance and can even be built with a single train-
ing image. However, because CFs are well explained in previous publications
[25,26], we provide only a brief summary.

The main idea behind CF design is to control the shape of the cross-
correlation output between the training image and the template (loosely
called a filter) by minimizing the mean square error between the actual cross-
correlation output and the ideal desired correlation output for an authentic
(or impostor) input. For an authentic pair, the correlation output response,
denoted as C (or Ci if the aim is to obtain a collection of CF outputs; e.g.,
for the i−th patch comparison of N total patches) from the probe image and
gallery template should exhibit a peak at the location of the best match. For
an impostor pair comparison, the CF output should exhibit no such peak.
Each gallery template is designed to achieve said behavior on training data,
which ideally extends to testing data from the same user.

The trained template, H, is compared to a probe image, Y, by obtaining
the cross-correlation as a function of the relative shift between the template
and the query. For computational efficiency, this is computed in the spatial
frequency domain (u,v):

Ĉ(u, v) = Ĥ(u, v)Ŷ∗(u, v) (8.1)

where:

ˆindicates the two-dimensional (2D) discrete Fourier transform (DFT)

Ŷ(u, v) is the 2D DFT of the probe image pattern

Ĥ(u, v) is the CF (i.e., 2D DFT of the trained template)

Ĉ(u, v) is the 2D DFT of the correlation output C(x, y) with superscript

∗ denoting the complex conjugate.

The correlation output response peak value is used to indicate how similar the
probe image is to the gallery template. In addition, the location of the peak can
be used as an indication of the location of the trained pattern within the probe
image. Thus, CFs can simultaneously locate and detect a biometric signature.

8.3 Stacked Correlation Filters

Conceptually, CFs are regressors, which map the image features to a specified
output. Under challenging conditions like 1:l matching of images with signifi-
cant appearance variability (e.g., because of illumination, pose changes, etc.),
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During training, the correlation outputs of the previous
layer are used to build the stacked filters of the next layer

Gallery image

Probe image

Probe and gallery may be
divided into patches SCF implementation at layer 1

Correlation
outputs

Correlation
outputs

Refinement

Gallery templates Stack templates

TrainTrainTrain

Initial correlation (layer 0)

Stack templates

SCF implementation at layer 2

FIGURE 8.2
SFC overview: Operating first on the outputs from an initial matching stage,
additional sets of CFs are consecutively layered with each set designed to
refine the previous layer’s output to the desired ideal output.

a single CF may be insufficient to deal with the wide range of variations in the
image appearance (such as displayed in Figure 8.1). SCFs address this problem
by using a layered approach to refine the correlation outputs from the initial
matching and provide better discrimination between authentic and impostor
pairs. The “stack” is built as a set of sequential CFs, the first layer being
applied to the output after correlating the image features, and the subsequent
layers applied to the refined outputs of the previous layer, as in Figure 8.2. The
additional degrees of freedom allow SCFs to better deal with image variability.

Operating first on the outputs from an initial CF (referred to as layer 0),
additional sets of CFs are consecutively layered with each set designed to refine
the output from the previous layer to the ideal desired correlation output.
The intuition is that because correlation outputs for matching pairs have an
expected shape, an additional CF can be trained to recognize said shape and
use that result to improve the final output. The resulting SCF architecture
thus simplifies the matching process to a series of sequential predictions with
the output of the previous layer feeding into the next. The approach can be
applied to a single CF output; however, as we will discuss, there can be a more
significant improvement by dividing the image into a set of patches such as
shown in Figure 8.2.

The use of sequential predictions (feeding the output of predictors from a
previous stage to the next) has been revisited many times in the literature.
In Cohen and Carvelho et al. [27] and Daumé et al. [28], sequential predic-
tion is applied to natural language processing tasks, whereas in Viola and
Jones [29], a face-detection system was developed consisting of a cascaded
series of classifiers. More recently the inference machines architecture [30,31]
was proposed that reduces structured prediction tasks, traditionally solved
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using probabilistic graphical models, to a sequence of simple machine learn-
ing subproblems. Within biometrics, sequential predictions have been applied
to perform score fusion [32,33]. SCFs operate on a similar intuition (itera-
tively applying weak classifiers to improve the final output), but offer a novel
approach in both biometric recognition as well as in CF application.

8.3.1 Initial correlation output (Layer 0)

The initial matching between the probe and gallery images is contained within
what is referred to as layer 0 of the SCF architecture. Distinct and separate
from the proposed model, this layer relates the extracted features from the
probe and gallery images to provide the initial correlation outputs that are
fed to the SCFs.

Considering that each image (or patch region) only provides limited train-
ing information for the specific user in a 1:1 matching scenario, several feature
sets (K total) are extracted to build a more robust template for the first stage
of recognition (i.e., each pixel or a group of pixels is represented by a vector
of features). We design one CF per feature channel such that the correlation
output is a sum of individual outputs as depicted in Figure 8.3. Contrary to
building K-independent CFs, we design all K CFs jointly to ensure the out-
put satisfies our design criteria. The joint CF design is posed as the following
optimization problem:

min
h1,...,hK

1

r

r∑

j=1

∥
∥
∥
∥
∥

K∑

k=1

zjk ⊗ hk − gj

∥
∥
∥
∥
∥

2

2

+ λ

K∑

k=1

‖hk‖22

s.t.

K∑

k=1

hT
k z

j
k = uj j = 1, 2, · · · , r

(8.2)

where:

⊗ denotes the vectorized 2D correlation operator of the implied 2D arrays
represented by its constituent vectors

zjk is vectorized representation of the k−th feature dimension of image Xj

(total of r images)

Observed pattern
Pattern templates Authentic correlation output

S

y x
−10−10

00

0
0.2
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0.8
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10 10

FIGURE 8.3
The outputs of individual feature channels for an image patch are aggregated
to produce the final correlation output, which would have a sharp peak at the
target location.
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hk is vectorized representation of the k−th correlation filter

gj is vectorized representation of the desired correlation output for the
j−th image

uj is the constrained inner-product output, and λ > 0 is used to provide
regularization from additive noise.

The terms in Equation 8.2 aim to minimize the mean square error between
the actual and desired correlation output for each training image while con-
straining the filter to produce a large value (i.e., uj = 1) given an authentic
correlation and small value (i.e., uj = 0) otherwise.

The following closed form expressions for the CF, Ĥ =
[
ĥT
1 , . . . , ĥ

T
K

]T

(where Ĥ ∈ C
KM×1, K feature sets, and M is the dimensionality of each

feature set) and can be derived by posing the optimization problem in the
frequency domain provided gj is a delta function (see Rodriqeuz [25] and
Kumar et al. [34] for more details):

Ĥ = T̂−1Ẑ
(
Ẑ†T̂−1Ẑ

)−1

u (8.3)

where † denotes the conjugate transpose and Ẑ =
[
ẑ1, ẑ2, . . . , ẑr

]
is the

training matrix composed of concatenated vectors ẑjk from the r training

images of K feature sets (i.e., ẑj =
[
(ẑj1)

T , . . . , (ẑjK)T
]T

, where ẑjk ∈ C
M

and Ẑ ∈ C
KM×r), and T̂ = λI + Â where I is the identity matrix to pro-

vide regularization to noise and Â is the power spectrum of the extracted
features (average energy on the diagonal and cross-power spectrum on the off
diagonals):

Â =

⎡

⎢
⎢
⎣

1
r

∑
j Ẑ

(j)†
1 Ẑ

(j)
1 · · · 1

r

∑
j Ẑ

(j)†
1 Ẑ

(j)
K

...
. . .

...
1
r

∑
j Ẑ

(j)†
K Ẑ

(j)
1 · · · 1

r

∑
j Ẑ

(j)†
K Ẑ

(j)
K

⎤

⎥
⎥
⎦ (8.4)

where Ẑj ∈ C
M×M is a diagonal matrix with ẑj along the diagonal.

Determining the template in Equation 8.3 requires the inverse of a rather
large but sparse matrix T̂ ∈ C

KM×KM with a special block structure where
each block is a diagonal matrix. By leveraging this structure, we recursively
invert this matrix blockwise using the schur complement [35], which can be
computed efficiently because the blocks are diagonal matrices:

T̂−1 =

[
D E
F G

]−1

=

[
J K
L M

]

(8.5)

where J = (D−EG−1F)−1 and K,L, and M are functions of J,E,F, and G.
Because E,F, and G are diagonal matrices, the matrix product EG−1F can
be computed easily. Further, J has the same block structure as T̂ and can be
inverted recursively using the same procedure.
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8.3.2 Stacked layers

The SCFs are trained using only the correlation outputs and corresponding
similarity or dis-similarity labels per match pair from the previous layer. In
the case in which the image is divided into multiple patches, the SCF for the
next layer is designed as a multichannel CF [1,4] with the correlation outputs
of the patches (N total) from the previous layer constituting the features for
each channel. At each layer l, the filter design problem is posed as (using τ
training correlation outputs from the previous layer):

min
wl

1,...,w
l
N

1

τ

τ∑

i=1

∥
∥
∥
∥
∥
∥

N∑

j=1

(cl−1
i )j ⊗wl

j − gi

∥
∥
∥
∥
∥
∥

2

2

+ Λl
N∑

j=1

∥
∥wl

j

∥
∥2
2

(8.6)

where:

(cl−1
i )j is the vectorized representation of the j−th patch correlation out-
put of the i−th image pair from the previous layer

wl
j is vectorized representation of the j−th SCF at layer l

gi is the vectorized representation of the desired correlation output

Λl is used to provide regularization from additive noise.

Unlike the CFs used for the initial outputs (layer 0), the SCFs are uncon-
strained, that is, the result of an inner product between the input and template
is not forced to a specific value.

The optimization problem in Equation 8.6 can be solved for the l−th
SCF Ŵl =

[
(ŵl

1)
T , · · · , (ŵl

N )T
]T

(with Ŵl ∈ C
NR×1, N is the number of

patches, and R is the dimensionality of each patch), in the frequency domain
(see [1] for more details):

Ŵl = Ŝ−1Q̂ (8.7)

where Ŝ = ΛlI+ B̂ trades-off regularization to noise (I is the identity matrix)
and the cross-power spectrum of the correlation outputs B̂:

B̂ =
1

τ

⎡

⎢
⎢
⎣

∑
i(Ĉ

(l−1)∗
i )1(Ĉ

(l−1)
i )1 · · · ∑

i(Ĉ
(l−1)∗
i )1(Ĉ

(l−1)
i )N

...
. . .

...
∑

i(Ĉ
(l−1)∗
i )N (Ĉ

(l−1)
i )1 · · · ∑

i(Ĉ
(l−1)∗
i )N (Ĉ

(i)
1 )N

⎤

⎥
⎥
⎦ , (8.8)

and Q̂ is the weighted average (or simple average when gi represents a delta
function as in our experiments) of the correlation outputs from the previous
layer (l–1):

Q̂ =

⎡

⎢
⎢
⎣

1
τ

∑τ
i=1(Ĉ

(l−1)∗
i )1ĝi

...
1
τ

∑τ
i=1(Ĉ

(l−1)∗
i )N ĝi

⎤

⎥
⎥
⎦ , (8.9)



Stacked Correlation Filters 183

and (Ĉ
(l−1)

i )j is a diagonal matrix with the vectorized 2D DFT representation

of (ĉ
(l−1)
i )j along the diagonal.

Equation 8.9 shows that the design and suitability of the filter relies on the
average of the inputs, which, as previously discussed, for nonregular patterns
may produce a bloblike result. However, because correlation planes are used as
the inputs, which have an expected shape (authentic comparisons should con-
tain a sharp peak at the location of best match), the SCFs will not necessarily
suffer from this drawback.

Similar to the constrained filter used for the initial CF outputs (layer 0),
the filter design for the SCFs requires computing the inverse of a rather large,
but sparse matrix Ŝ ∈ C

NR×NR. As in the constrained case, the matrix has
a block structure in which each block is a diagonal matrix, thus can also be
computed efficiently as previously described.

Finally, the SCF method is computationally efficient because the applica-
tion of all the filters in the SCF stack can be done in the frequency domain
thereby requiring the Fourier transform only on the image features and a
final inverse Fourier transform at the end of the stack. The SCF architecture
requires computing the DFT of the K extracted features of dimensionality
R for a complexity of O(KR log(R)). Applying the CFs in the frequency
domain consists of single element-wise matrix multiplications for a complex-
ity of O(KR) at each layer. Adding SCF layers only increases the cost linearly
with each layer (O(LKR) where L is the number of layers). Thus, the overall
cost (including the DFT cost) is O(KR(L+ log(R)).

8.3.3 Correlation output refinement

Because correlation is linear, as in other multilayer classifiers, a nonlinear
operation is implemented to separate the layers (without the nonlinearity,
the “stack” is equivalent to a single filter). In our design, we considered the
following nonlinear operations.

• Peak correlation energy (PCE): f(C) = C−μC

σC
, where μC is the mean

and σC is the standard deviation of that correlation output

• Hyperbolic tangent (Tanh): f(C) = tanhC

• Sigmoid function (Sig): f(C) = 1
1+e−C

• Rectified linear unit (ReLU): f(C) = max (0,C),

where the nonlinear operation, f(·), is applied to the output(s) of the SCFs
when correlated with the previous layer’s outputs. Recall that the purpose
of the SCFs at each layer is to refine the previous layer’s correlation output
(i.e., to sharpen existing peaks for authentic comparisons while flattening the
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Combined refinement (CR) implementation at layer l

Apply
nonlinearity

Patch 1

(a)

Patch 2

Correlation
output Cl−1

Correlation
output Cl−1
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Cl−1 Wl×f (Σj                    )

DWl = f (Cl−1     Wl)×

(b) Individual refinement (IR) implementation at layer l

FIGURE 8.4
Visual representation of each method for computing the refinement to be
added back to the previous layer’s outputs when applying a set of SCFs:
(a) Combined refinement and (b) Individual refinement.

outputs for impostor comparisons). To this end, we developed two refinement
methods shown in Figure 8.4 for determining the SCF outputs:

• Combined Refinement (CR): The outputs from the previous layer are cor-
related with the SCFs. The resulting correlation outputs are added, and
a nonlinear function is applied to the sum. This result is added back to
refine the outputs from the previous layer as shown in Figure 8.4a:

E(C) = f

⎛

⎝
N∑

j=1

Cj

⎞

⎠ . (8.10)

• Individual Refinement (IR): The outputs from the previous layer are cor-
related with the SCFs. A nonlinear function is applied to each correlation
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output, and the result is added back to refine the output from the previous
layer as shown in Figure 8.4b:

E(C) = f(Cj). (8.11)

An overview of the process used to train and test the SCFs for a given refine-
ment method and nonlinear function is displayed by Algorithms 8.1 and 8.2,
respectively.

Algorithm 8.1 SCFs: Training

Require: Image Pairs {Xi,Yi}τi=1

1: for i = 1 to τ do
2: Learn Gallery CF Hi using Xi

3: C0
i = f(Hi ⊗Yi)

4: end for
5: for l = 1 to L do
6: Train SCF Wl using {Cl−1

i }τi=1

7: for i = 1 to τ do
8: DWl

i
= E(Cl−1

i ⊗Wl)

9: Cl
i = DWl

i
+Cl−1

i

10: end for
11: end for

Algorithm 8.2 SCFs: Testing

Require: Image Pair {X,Y}
1: Learn Gallery CF H using X
2: C0 = f(H⊗Y)
3: for l = 1 to L do
4: DWl = E(Cl−1 ⊗Wl)
5: Cl = DWl +Cl−1

6: end for
7: Patch Score P = maxCL

8: Final Score S =
∑

i Pi

8.4 Experiments and Analysis

As we will show, achieving optimal performance by manually encoding a single
layer or set of layers to a specific refinement method and nonlinearity is a
nontrivial task. Thus, during training we searched over each combination and
determined the best selection with cross-validation, a procedure we designated
as Dynamic Refinement (DYN). The result allowed the SCF architecture to
actively adjust to the quality of the outputs of the previous layer.
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We briefly examine each SCF configuration and the benefits of the DYN
approach using the Extended Yale B face data set (YaleB+) [36] in a 1:1
image-to-image matching scenario (excluding self-comparisons) with fivefold
cross validation. As a measure of overall system performance, we report equal
error rates (EERs) and verification rates (VRs) from the scores obtained by
concatenating the associated folds.∗ Finally, we preprocess the images by a
simple histogram normalization to compensate for drastic variations in illu-
mination, resize each to 128 × 128 pixels for computational efficiency, and
set λ = 10−5 when training the CFs at layer 0 (parameter which is used
in CF design to trade-off output resistance to noise and average correlation
energy) with Λl (trade-off parameter used in the SCFs) being found via cross-
validation at each layer l.

Composed of 2414 frontal-face images from 38 subjects, the images from
the YaleB+ face data set capture 9 lighting directions and 64 illumination
conditions for each user (thus there are ∼64 samples per subject). As shown
in Figure 8.5 the data set images are well aligned (cropped and normalized
to 192 × 168 pixels) because of careful acquisition under a “dome camera”
setting, but exhibit severe illumination variations. Traditionally the data set
is divided into five subsets according to the angle between the light source
direction and the central camera axis (12◦, 25◦, 50◦, 77◦, 90◦) where the
recognition challenge increases as the angle increases. However, for the pre-
sented experiments in this chapter all of the images were treated equally to
eliminate any bias.

When training the SCFs, we followed the procedure described by
Algorithm 8.1. However, to prevent overfitting at each layer, a new randomized

FIGURE 8.5
Sample intraclass images from the YaleB+ face database.

∗We don’t include rank-1 identification rates since performance is always >99%.
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subset of the available match pairs are selected to be used for training. For
example, within the first fold there are 1931 images available for training,
and thus ∼3.7 million possible match pairs including self comparisons (i.e.,
1931× 1931). When training the first layer we randomly select 23,000 (20,000
authentic, 3,000 impostor) of the available match pairs to build the SCFs.
Then when training the next layer, we apply the SCFs from the first layer to
a new random subset of another 23,000 match pairs, and so on. Significantly
fewer outputs from impostor match pairs are employed during training because
they are largely just noise (with the exception of hard impostors, as we will
discuss later), so we do not need to include many examples.

Figure 8.6 shows the resulting EERs (right y-axis, dashed lines) and VRs
(left y-axis, solid lines) from running the match scenario in which three SCF
layers are trained and implemented for varying patch configurations: 1 × 1,
2× 2 (four total patches), 3× 3, ..., 6× 6 (36 total patches). Best results for
the CR method (94.62% VR, 1.84% EER) are obtained using the first layer
of a 5× 5 patch configuration and ReLU nonlinearity. The best results for the
individual refinement (IR) method are obtained using the first (3.78% EER)
and second layers (85.18% VR) of a 3 × 3 patch configuration and sigmoid
nonlinearity.

From the plots in Figure 8.6, we first notice that there is not a single
patch configuration or nonlinearity that consistently outperforms the others.
Nonetheless, some relationships do emerge when focusing on each refinement
method individually. For the CR method, employing more patches produces
better performance in most of the experiments. This is because, by taking the
sum of the set, patches with poor performance can be strengthened by those
with better performance. Thus, adding patches produces a larger response.
Accordingly, the IR method needs fewer patches to ensure that each perform
similarly because of no specific mechanism being in place for adjusting poor-
performing patches, and thus, fewer patches limit the disparity. Implemented
individually, the deficiencies become more apparent; however, the conflict-
ing nature will be shown to be beneficial when adjusting the model at each
layer.

The experiments on the CR and IR methods also reveal what is referred to
as the “hard imposter” phenomenon. Figure 8.7 shows an example occurrence
in which the impostor score distribution ultimately separates into multiple
modes. Not being limited to either refinement method (CR and IR), the prob-
lem appears when a set of outputs causing false peaks in impostor correlation
planes are refined or sharpened similar to authentic comparisons. Continuing
to iterate with each layer only further perpetuates the problem and pushes
more impostor scores closer to the authentic distribution (i.e., causing more
false-positives and thereby decreasing the verification performance, but not
necessarily affecting the rank-1 identification rate because a large number of
authentic scores are well above the EER and VR score thresholds). This is
mitigated by cross-validating over-refinement and nonlinearity for each layer.
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FIGURE 8.6
Performance of the CR and IR methods over varying patch comparisons and
nonlinearities on the YaleB+ face data set. For each patch configuration
(x-axis), each graph shows VR on the left y-axis (solid lines) and EER on
the right y-axis (dashed lines). The last column displays two tables with the
best results from each refinement method over all patch configurations. The
tables illustrate numerically that aggressive refinement can quickly cause per-
formance to degrade.

Figure 8.8 contains the distribution of nonlinearities and refinements
resulting from searching over each nonlinearity and refinement during train-
ing, whereas Figure 8.9 shows the corresponding performance. Best results are
obtained at the second layer of a 6×6 patch configuration (92.11% VR, 2.52%
EER). Despite the best individual performance being achieved from using a
single nonlinearity and refinement method (CR with ReLU on 5× 5 patches),
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FIGURE 8.7
Example of how hard impostors can negatively effect the SCF output (can
occur in both CR and IR methods). As shown, the impostor score distribu-
tion splits into multiple modes—easier impostors being separated from harder
impostors, which have false peaks sharpened—causing the higher layers to
perform poorly. The neighboring table shows the Fisher’s ratio at each layer.

there is a significant improvement of the stability of the model (across all
patches) when using the DYN. Progress is no longer limited to the first or
second layer, with quick degradation thereafter, but instead improves more
gradually across several layers. Thus, rather than needing to empirically test
each refinement method and nonlinearity, we can now largely ensure that
improvement will occur as long the two images are divided into patches for
matching.∗

By examining the histograms in Figure 8.8 we notice that there is little
correlation with regard to when one refinement or nonlinearity is better than
another (aside from the 1×1 patch configuration where the IR and CR meth-
ods are equivalent). Rather, what does stand out from the histograms is that
the folds make similar choices (e.g., based on these results it is unlikely that the
nonlinear operation implemented layer 2 of one fold will differ from that of
another fold). However, we do notice that the Tanh and Sig operations are
rarely used after the initial correlation (layer 0).

∗Similar to the CR method, the DYN method works best with more patches.
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FIGURE 8.8
Distribution across nonlinearities (left column) and refinement methods (right
column) used at each layer when searching over each during cross-validation
(referred to as dynamic refinement) for each patch configuration on the
YaleB+.

Finally, we examine the computational cost of applying each refinement
method. Computation times (in milliseconds) from the IR and CR methods
are shown in the table that follows (using a 4× 4 patch configuration). Each
time comparison is based on matching a random assortment of 1000 authentic
and 9000 impostor comparisons (generating a 100 × 100 score matrix) and
averaging the result. These tests were completed (using a single thread) on a
64-bit laptop with a 2.67 GHz dual core Intel i7-620M CPU and 8 GB of RAM
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FIGURE 8.9
Performance of the dynamic refinement (DYN) method on YaleB+.

Layer 1

Layer 0 CR IR

Authentic 18.179 ms 29.295 ms 26.539 ms
Impostor 18.070 ms 28.924 ms 26.846 ms

The table shows the average computation time required for authentic and
impostor match pairs after applying one SCF layer. As expected, the compu-
tational cost of the IR and CR methods is equivalent.

8.5 Summary

CFs are designed to specify a desired output for authentic and impostor
matches and are widely used in many biometric applications. In this chapter
we discussed SCFs, a fundamentally new CF paradigm in which instead of a
single CF, we use a cascaded stack of filters to achieve the desired CF outputs.
The included experiments demonstrate the effectiveness of SCFs for biometric
verification, achieving substantial performance gains over a single CF under 1:l
image matching scenarios.

Although this chapter discussed the use of CFs for this purpose, the idea
behind the process is not so limited. Accordingly, future efforts could investi-
gate different classifiers and training configurations for improved performance
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(e.g., most impostor planes are essentially noise), thus discriminative methods
may have difficulty trading off against the lack of structure, instead possibly
requiring to mine hard impostors during training. One benefit of the SCF
approach discussed in this chapter is that adding SCF layers only increases
the computational cost linearly with each layer, accordingly, a challenge of
any future research will be to demonstrate that any increased complexity is
worth the increased computation or is limited to filter training.

References

1. V. N. Boddeti, T. Kanade, and B. V. K. Vijaya Kumar. Correlation fil-
ters for object alignment. In IEEE International Conference on Computer
Vision and Pattern Recognition, pp. 2291–2298, June 2013.

2. A. Rodriguez, V. N. Boddeti, B. V. K. Vijaya Kumar, and A. Mahalanobis.
Maximum margin correlation filter: A new approach for localization and
classification. IEEE Trans. on Image Processing, 22(2):631–643, 2012.

3. J. F. Henriques, J. Carreira, R. Caseiro, and J. Batista. Beyond hard
negative mining: Efficient detector learning via block-circulant decom-
position. In 2013 IEEE International Conference on Computer Vision,
pp. 2760–2767, December 2013.

4. V. N. Boddeti and B. V. K. Vijaya Kumar. Maximum margin vector
correlation filter. ArXiv e-prints, abs/1404.6031, 2014.

5. J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploiting the cir-
culant structure of tracking-by-detection with kernels. In European Con-
ference on Computer Vision, pp. 702–715. Springer-Verlag, October 2012.

6. D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. Visual ob-
ject tracking using adaptive correlation filters. In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2544–2550, June 2010.

7. J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-speed track-
ing with kernelized correlation filters. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37(3):583–596, 2015.

8. M. D. Rodriguez, J. Ahmed, and M. Shah. Action MACH a spatio-
temporal maximum average correlation height filter for action recogni-
tion. In IEEE International Conference on Computer Vision and Pattern
Recognition, pp. 1–8, June 2008.

9. H. Kiani, T. Sim, and S. Lucey. Multi-channel correlation filters for human
action recognition. In IEEE International Conference on Image Process-
ing, pp. 1485–1489, October 2014.



Stacked Correlation Filters 193

10. C. K. Ng, M. Savvides, and P. K. Khosla. Real-time face verification sys-
tem on a cell-phone using advanced correlation filters. In IEEE Workshop
on Automatic Identification Advanced Technologies, pp. 57–62, October
2005.

11. M. Zhang, Z. Sun, and T. Tan. Perturbation-enhanced feature correlation
filter for robust iris recognition. Biometrics, IET, 1(1):37–45, 2012.

12. J. M. Smereka, V. N. Boddeti, and B. V. K. Vijaya Kumar. Probabilistic
deformation models for challenging periocular image verification. IEEE
Transactions on Information Forensics and Security, 10(9):1875–1890,
2015.

13. A. Meraoumia, S. Chitroub, and A. Bouridane. Multimodal biometric per-
son recognition system based on fingerprint & finger-knuckle-print using
correlation filter classifier. In IEEE International Conference on Commu-
nications, pp. 820–824, June 2012.

14. P. H. Hennings-Yeomans, B. V. K. Vijaya Kumar, and M. Savvides. Palm-
print classification using multiple advanced correlation filters and palm-
specific segmentation. IEEE Transactions on Information Forensics and
Security, 2(3):613–622, 2007.

15. G. W. Quinn and P. J. Grother. Performance of face recognition algo-
rithms on compressed images. Technical Report NISTIR 7830, National
Institute of Standards and Technology (NIST), December 2011.

16. P. J. Phillips, W. T. Scruggs, A. J. O’Toole, P. J. Flynn, K. W. Bowyer,
C. L. Schott, and M. Sharpe. FRVT 2006 and ICE 2006 large-scale results.
Technical report, National Institute of Standards and Technology (NIST),
IEEE, March 2007.

17. P. J. Phillips, J. R. Beveridge, B. A. Draper, G. Givens, A. J. O’Toole,
D. S. Bolme, J. Dunlop, Y. M. Lui, H. Sahibzada, and S. Weimer. An
introduction to the good, the bad, & the ugly face recognition challenge
problem. In IEEE International Conference on Automatic Face Gesture
Recognition and Workshops, pp. 346–353, March 2011.

18. A. Mahalanobis, B. V. K. Vijaya Kumar, S. Song, S. R. F. Sims, and
J. F. Epperson. Unconstrained correlation filters. Applied Optics, 33(17):
3751–3759, 1994.

19. A. Mahalanobis and H. Singh. Application of correlation filters for texture
recognition. Applied Optics, 33(11):2173–2179, 1994.

20. M. Alkanhal, B. V. K. Vijaya Kumar, and A. Mahalanobis. Improving
the false alarm capabilities of the maximum average correlation height
correlation filter. Optical Engineering, 39:1133–1141, 2000.



194 Deep Learning in Biometrics

21. P. K. Banerjee, J. K. Chandra, and A. K. Datta. Feature based optimal
trade-off parameter selection of frequency domain correlation filter for real
time face authentication. In International Conference on Communication,
Computing & Security, pp. 295–300. New York, ACM, February 2011.

22. B. V. K. Vijaya Kumar and M. Alkanhal. Eigen-extended maximum aver-
age correlation height (EEMACH) filters for automatic target recognition.
In Proceedings of the SPIE - Automatic Target Recognition XI, Vol. 4379,
pp. 424–431, Bellingham, WA, SPIE, October 2001.

23. B. V. K. Vijaya Kumar, A. Mahalanobis, and D. W. Carlson. Optimal
trade-off synthetic discriminant function filters for arbitrary devices. Op-
tical Letters, 19(19):1556–1558, 1994.

24. Y. Li, Z. Wang, and H. Zeng. Correlation filter: An accurate approach to
detect and locate low contrast character strings in complex table environ-
ment. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(12):1639–1644, 2004.

25. B. V. K. Vijaya Kumar, A. Mahalanobis, and R. Juday. Correlation Pat-
tern Recognition. New York: Cambridge University Press, 2005.

26. V. N. Boddeti and B. V. K. Vijaya Kumar. Extended depth of field iris
recognition with correlation filters. In IEEE International Conference on
Biometrics: Theory, Applications and Systems, pp. 1–8, September 2008.

27. W. W. Cohen and V. R. Carvalho. Stacked sequential learning. In
International Joint Conference on Artificial Intelligence, pp. 671–676, San
Francisco, CA, Morgan Kaufmann Publishers Inc., August 2005.
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9.1 Introduction

For many decades, fingerprints have been a popular and successful biometric
for person identification. They are gradually becoming the universal identi-
fiers for a multitude of applications such as e-commerce, law enforcement,
forensics, and banking. A recent survey shows that the market of fingerprint
biometrics in 2016 was worth USD $4.1 billion, accounting to 91% of the
overall biometrics market [1]. Supported by the recent advancements in tech-
nology and data-handling capacity, automated fingerprint-recognition systems
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are extensively used in many civil and law enforcement applications, such as
access-control systems, financial-transaction systems, and cross-border secu-
rity at immigrations, where it is required to capture fingerprint images in a
semi-controlled or uncontrolled manner.

With variety in requirements and applications, fingerprint literature com-
prises multiple kinds of fingerprints captured using different capture mech-
anisms [2]: (1) inked fingerprints, obtained by applying a specialized ink on
finger skin and the ridge characteristics are captured using a fingerprint card,
(2) live-scan fingerprints captured using optical, thermal, and capacitive sen-
sors, (3) latent fingerprints captured using offline capture mechanisms, and
(4) fingerphotos, captured using cameras from mobile devices such as cell
phone or web camera. The type of fingerprint captured and tested varies with
the variation in the application. Traditional civil and commercial applications
of fingerprint recognition involves capturing the fingerprint ridge-valley struc-
ture in a controlled environment using live scanners to provide access control.
Law enforcement and forensic applications involve matching latent fingerprints
lifted from a crime scene to be matched with live scans or tenprint cards
captured in a controlled environment. Recently, popular banking and access-
control applications require logging with fingerprints captured from sensors in
mobile phones, that are either capacitive or optical cameras.

Figure 9.1 shows multiple fingerprint images from the same finger captured
during the same session using different controlled and uncontrolled capture
mechanisms. Figure 9.1a–d shows controlled fingerprints captured using ink
and live-scanner mechanisms. Figure 9.1e shows a latent fingerprint lifted from
a ceramic surface, and Figure 9.1f contains a fingerphoto image captured using
a smartphone. It can be observed that fingerprint data/information content
visually differs based on the capture mechanism. Inked fingerprint or live-
scan fingerprints are captured in a highly controlled environment producing
high clarity, continuous ridge-valley patterns with very little or no background

2. Right index
(a) (b) (c) (d) (e) (f)

FIGURE 9.1
Images of the right index finger of a subject captured during the same session
using different controlled and uncontrolled capture mechanisms: (a) inked fin-
gerprint, (b)–(d) live-scan fingerprints: (b) CrossMatch sensor, (c) Secugen
Hamster IV sensor, (d) Lumidigm multispectral sensor, (e) latent fingerprint
lifted using black powder dusting method, and (f) fingerphoto image captured
using smartphone camera.
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variations. However, as we move into more uncontrolled fingerprint capture
environments such as latent fingerprints or contact-less capture of fingerphoto
images, the obtained ridge-valley pattern is very different from the traditional
capture mechanisms.

The focus of this chapter is on unconstrained fingerprint recognition, that
is, processing latent fingerprints and fingerphotos. Latent fingerprints are
unintentional reproductions of fingerprints by transfer of materials from the
skin to the surface in contact. The secretions in the surface of the skin such
as sweat, amino acids, proteins, and natural secretions when come in con-
tact with the surface, a friction ridge impression of skin is deposited on the
surface. These impressions depend on the nature of the skin and the nature
of the surface and often are not easily visible directly to human eyes unless
operated by some external recovering technique such as powdering or chemical
fuming [4]. Latent fingerprints are extensively used in forensic applications as
common evidences in crime scene applications. Fingerphoto is a contact-less
imaging of the finger ridge impression using a camera. A common application
of fingerphoto includes use of present-day smartphone device or any other
handheld electronic device to capture a photo of the frontal region of the fin-
ger. Because of the contact-less nature of the capture, the ridge-valley contrast
obtained in a fingerphoto image will be highly different from a fingerprint im-
age captured using a live-scan capture device. In such fingerprints, the ridge
flow becomes highly discontinuous, a lot of background noise is introduced
during capture, and only a partial fingerprint is obtained, while the rest is
either lost or smudged during capture. Figures 9.2 and 9.3 show different
capture variations and their corresponding challenges such as partial infor-
mation, poor quality, distortions, and variations including background and
illumination. This demonstrates that the variations in sensors and acquisition
environment introduce a wide range of both intra- and interclass variability in
the captured fingerprint in terms of resolution, orientation, sensor noise, and
skin conditions. Extensive research has been undertaken in fingerprints cap-
tured using inked and live-scan methods [2,5–7]. However, these underpinned
challenges and capture variations limit the use of existing automated live-scan
matching algorithms for matching latent fingerprints and fingerphoto images.

The pipeline of an automated fingerprint identification system (AFIS) can
be divided into a set of sequential stages: (1) region of interest (ROI) segmen-
tation, (2) ridge quality assessment and enhancement, (3) feature extraction
to uniquely represent the fingerprint ridge pattern, and (4) feature matching.
As demonstrated previously, the most significant impact of varying acquisi-
tion environments and devices is on the feature extraction stage, which plays a
pivotal role into the overall pipeline. Traditionally, fingerprint features can be
categorized into three types: level-1, level-2, and level-3 features (Figure 9.4).
Core and delta points comprise level-1 features, which are used for indexing
large data sets, whereas dots, pores, and incipient ridges comprise level-3 fea-
tures and are used for matching high-resolution fingerprint images [10]. Minu-
tiae (level-2 features) are the most widely and commonly accepted features in
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(a) (b) (c) (d)

(e) (f) (g)

FIGURE 9.2
Illustration of different challenges in latent fingerprint recognition: (a) partial
information, (b) similar/complex background, (c) orientation variation,
(d) slant surface/nonlinear distortions, (e) poor quality or blur, (f) illumi-
nation variation, and (g) overlapping fingerprints. (From CASIA-Fingerprint
V5. Chinese Academy of Sciences Institute of Automation (CASIA) Finger-
print Image Database Version 5.0.)

(a) (b) (c) (d)

(e) (f) (g)

FIGURE 9.3
Illustration of different challenges in fingerphoto recognition: (a) partial
information, (b) similar/complex background, (c) pose variation, (d) slant skin
surface, (e) poor quality or blur, (f) illumination variation, and (g) multiple
fingers.
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FIGURE 9.4
An illustration of traditional fingerprint features consisting of level-1, level-2,
and level-3 features.

representing fingerprints. However, the noisy capture of fingerprints in uncon-
trolled environments affects the reliability of minutiae extraction. As shown
in Figure 9.5, one of the state-of-the-art minutia extraction algorithms yields
a high percentage of spurious minutiae [9,11,12].

Puertas et al. [13] studied the performance of manual and automated minu-
tiae extraction in 2010. They also compared minutiae extraction from latent
fingerprints with slap and rolled fingerprints. To analyze these experiments,
they created a database of 50 latent fingerprints, 100 plain and rolled fin-
gerprints, along with a 2.5 million extended gallery of tenprint cards. One of
the major findings of their research is that despite a higher average number
of minutia being detected in latent fingerprints by automated commercial-of-
the-shelf system (COTS) (31.2) compared to 25.2 by manual marking, the sys-
tem performed lower with 48.0% rank-1 identification compared to 72.0% for
manual marking. This is because of the presence of many false minutia points
detected in the automated minutiae extraction phase. The study performed
by Puertas et al. [13] shows the need for a good automated minutiae extrac-
tor for latent fingerprints. The automated minutiae extractor should not only
detect the true minutiae present in the latent fingerprints (or unconstrained
fingerprints), but also reduce the number of spurious minutiae detected.

In literature, researchers have proposed several hand-crafted enhance-
ments to minutia extraction and representation for unconstrained fingerprints.
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(a)

(c) (d)

(b)

(e) (f)

FIGURE 9.5
Sample images showing spurious minutiae extraction using VeriFinger 6.0
SDK in (a)–(b) latent fingerprints (from NIST SD-27 [8]) and (c)–(f) finger-
photo (from IIITD Fingerphoto database [9]).

In 2002, Lee et al. [14] proposed the usage of ridge frequency along with loca-
tion, type, and orientation for each minutia. Mueller and Sanchez-Riello [15]
used a hybrid approach of minutiae and skeleton data of the preprocessed
fingerphoto image for fingerphoto matching. In 2010, Cappelli et al. [16]
introduced Minutia Cylinder Code (MCC) as a robust and local descriptor
of minutia. Many researchers have further used MCC descriptors for feature
extraction in latent fingerprints [17–20]. In 2010, Jain and Feng [21] sug-
gested the use of a collection of hand-crafted features including fingerprint
skeleton, singular points, level-3 features, ridge flow, wavelength, and quality
map as an extended feature set for latent fingerprint matching. Apart from
minutiae-based features, researchers have also focused on other hand-crafted
features such as Gabor features [22,23], local binary pattern, and Speeded
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Up Robust Features (SURF) [24]. However, most of those approaches are not
robust to large variations in unconstrained or poor-quality fingerprints and
large data sets. Therefore, it is important to design a learning-based feature
representation algorithm that uses different kinds of fingerprint samples from
the training data to learn discriminatory feature representations that can tol-
erate noise and variations in data distribution.

In this chapter, we focus on two important and challenging applications of
uncontrolled fingerprint recognition: (1) a forensic application of recognizing
latent fingerprints and (2) a commercial application of matching fingerphoto
images. We emphasize the importance of building “lights-out” automated
matching for latent fingerprints and fingerphoto images using representation
learning (specifically, deep learning) algorithms, without human intervention.
We conduct a detailed survey of exiting approaches in uncontrolled fingerprint
comparison and present state-of-the-art approaches for latent fingerprint and
fingerphoto matching.

9.2 Deep Learning for Fingerprint: A Review

The literature for representation learning in fingerprint recognition can be
segregated into constrained and unconstrained fingerprint recognition.

9.2.1 Constrained fingerprint recognition

As shown in Table 9.1, the earliest work for fingerprint recognition using the
network-learning–based approach is proposed by Baldi and Chauvin [25] in
1993. Initially, the CCD camera-captured fingerprint image is subjected to
preprocessing, segmentation, alignment, and normalization. Once these steps
are performed both for gallery and probe images, the aligned pair of finger-
prints are matched. A central 65× 65 region is selected in gallery image and a
105× 105 probable region is found in the probe image. Within this 105× 105
patch of the probe image, the appropriate region corresponding to 65 × 65
regions of the gallery image is found by correlation. These 65 × 65 regions
are compressed and downscaled to 32 × 32 regions. Two different filters of
size 7 × 7 with a stride of 2 are convolved in this 32 × 32 region. The con-
volutions are followed by a sigmoid activation. The model is trained on 300
fingerprints and the testing is performed using 4650 fingerprint pairs. The
network is trained using gradient descent on cross-entropy error. On the test
pairs, authors reported an error rate of 0.5%.

Sagar and Alex [26] in their initial work in 1995 used fuzzy logic to model
dark (ridges) and bright (valleys) levels of fingerprints to extract minutiae.
As a further extension, in 1999, they used a combination of fuzzy logic system
and neural networks for minutiae detection. A filter bank of 32 filters, each
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of size 1× 5 in eight different orientations are considered to detect minutiae
from every pixel. The average response of each filter is served as input to
a fuzzification engine that converts this average into two values: dark and
bright. These two values for the 32 blocks are fed into a neural network
architecture: 64× 32× 32× 2, which outputs if the pixel location is minutia or
not. Compared to the vanilla fuzzy system, the use of neural network improved
the true positive rate for minutia detection by 7% and the false-recognition
rate decreased by 10%.

In 2015, Minaee and Wang [30] used Scattering Network (ScatNet) [33]
for controlled fingerprint recognition. ScatNet features are translation and
rotation invariant representation of a signal x, which are generated using a
scattering network. The scattering network has an architecture similar to
a convolutional neural network (CNN), however, its filters are predefined
wavelet filters. Once ScatNet features are extracted, authors applied a princi-
pal component analysis (PCA) for dimensionality reduction and classification
is performed using a multiclass support vector machine (SVM). The proposed
algorithm is tested on the PolyU fingerprint database [34]. On a total of 1480
images, 50% train-test split is performed. Images are resized to 80 × 60 and
using 200 PCA features, training of multiclass SVM is performed. On testing
data, an equal error rate (EER) of 8.1% and an accuracy of 98% is reported.
As compared to the previously reported results of minutia-based matching
with EER of 17.68%, the reported EER of 8.1% is a significant improvement.

Recently in 2016, Jiang et al. [31] proposed a minutiae extraction technique
for constrained fingerprint recognition using JudgeNet and LocateNet. Four
kinds of labeled patches are created: (1) 45 patch: 45 × 45, (2) 45b patch:
45 × 45 patch with blurred exterior region, (3) 63 patch: 63 × 63 patches,
and (4) 63b patch: 63 × 63 patches with blurred exterior region. To increase
the available data, patches are generated in an overlapping manner (overlap
r = 9 pixels). Also, to make the learning of the classifier rotation invariant
and increase its training data, additional patches are augmented by rotating
the generated patches by 90 degrees, 180 degrees, and 270 degrees and adding
them to the training set. In the first step, a CNN-based architecture called
JudgeNet identifies if the input patch has a minutiae or not. The architecture
of JudgeNet is as follows:

[Conv-1 Pool-1 Conv-2 Pool-2 Conv-3 Pool-3 Softmax(2 class)],

which uses an activation based on a rectified linear unit (ReLu) [35] for
each of the convolution layers. Once the minutia patches are detected, a
LocateNet is used for finding the minutia location in the central 27×27 region.
Training is performed by creating nine nonoverlapping 9 × 9 blocks in the
central 27×27 regions, each signifying a minutia location. The architecture of
LocateNet is same as JudgeNet except for the last layer, which can be seen as
follows:

[Conv-1 Pool-1 Conv-2 Pool-2 Conv-3 Pool-3 Softmax(9 class)].
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Further, spurious minutia are removed by taking a mean of the probabilities for
each minutia location and keeping only those which are greater than 0.5. Such
an approach is able to remove multiple spurious minutiae in nearby locations,
which are generated because of overlapping patches. Using an in-house data set
of 200 labeled fingerprint images, the authors reported the highest accuracy of
92.86% on 63b patches compared to 90.68%, 91.79%, and 91.76% in 45, 45b,
and 63 patches, respectively. These results signify that a larger patch size with
exterior region blurred is suitable for minutia detection using a deep CNN.

In literature, deep learning techniques are not only used to extract minutiae
in controlled fingerprints, but they can also be used to enhance ridge patterns
and reconstruct noisy orientation fields. In 2013, Sahasrabudhe and Nambood-
iri [27] proposed the use of unsupervised feature extraction using two contin-
uous restricted Boltzmann machines (CRBMs). The horizontal and vertical
gradients obtained from Sobel operator is given to two different orientation
extraction functions. The output from each of these functions is used to train
two CRBMs. The training is performed using 4580 good quality fingerprint
images. For each hidden neuron, sigmoid activation along with a “noise con-
trol” parameter is used. The patch size used in the experiment is 60 × 60,
which is downscaled to 10× 10 and fed into the visible layer with 100 nodes.
The number of hidden nodes used are 90. The testing is performed on the FVC
2002 DB3 database [36], and the outputs from both CRBMs are fused to get
corrected orientation field, which is further used for enhancement using Gabor
filters. The proposed approach detected fewer spurious minutiae (4.36%) and
an improved true acceptance rate (TAR) of 49% at 10% false acceptance rate
(FAR).

Sahasrabudhe and Namboodiri in 2014 extended their research [28] to
enhance fingerprints by proposing convolutional deep belief network (CDBN)–
based fingerprint enhancement. CDBNs are multiple convolutional restricted
Boltzmann machines stacked together to form one deep network. The proposed
architecture has two convolutional layers with a probabilistic max-pooling in
between and is fed with the grayscale image. Training is performed using
good quality hand-picked images from FVC 2000 DB1, FVC 2002 DB1, and
NIST SD-4 database. Using this trained CDBN architecture, a representation
of the input fingerprint image is obtained, which is reconstructed to get an
enhanced fingerprint image. The testing is performed on FVC 2000 DB1 and
DB2 [37] and FVC 2002 DB3 [36]. Compared to Gabor-based enhancement,
an improved EER of 6.62%, 8.52%, and 23.95% is reported on the three data
sets, respectively.

Wang et al. [29] used a sparse autoencoder [38] to classify fingerprints
based on the orientation pattern (whorl, left loop, right loop, and arch). The
sparse autoencoder is fed with an orientation field of the fingerprint image,
and the autoencoder tries to reconstruct the input field. Features from the
sparse autoencoder are fed into a multiclass softmax classifier where the input
features x are classified to class y out of all of the k classes (in this case,
k = 4). The sparse autoencoder model is trained using 2000 images and tested
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using 400 images from the NIST SD-4 database [39]. With three hidden layers
with 400, 100, and 50 nodes, respectively, a classification accuracy of 91.9% is
reported.

Recently in 2017, Michelsanti et al. [32] worked on classifying fingerprints
based on the orientation: whorl (W), left loop (L), right loop (R), and arch
(A). The arch orientation (A) is a combination of arch and tented arch from
the NIST SD-4 because the database has a fewer number of samples for these
two classes. Pretrained CNNs are used in the proposed algorithm (VGG-F [40]
and VGG-S [40]) and are fine-tuned on a subset of fingerprint images taken
from the NIST SD-4 database. For fine-tuning, the last fully connected layer
of respective CNNs are removed and a fully connected layer with four nodes
is added. To increase the number of samples while fine-tuning, data are aug-
mented by adding left-right flipped images to the data set and interchanging
the labels for the left and the right loop. While fine-tuning, adaptive local
learning rate and momentum are used to speed up training. On the testing set,
an accuracy of 95.05% using VGG-S is reported compared to 94.4% on VGG-F.

9.2.2 Unconstrained fingerprint recognition

Deep learning research in unconstrained fingerprint recognition has focused on
only latent impressions (though limited) and research in fingerphoto matching
has not used the capabilities of deep learning. Unlike constrained fingerphoto
research, one of the primary challenges in latent fingerprint recognition is the
lack of a large-scale labeled data set. Table 9.2 shows some of the popular data
sets in literature for matching latent fingerprints. Most of the research papers
in the literature have used these public data sets or have shown results on
some private in-house data sets, impacting the reproducibility of the results.

To estimate orientation of ridge flow in latent fingerprints, Cao and
Jain [47] trained a ConvNet to classify orientation field of a latent fingerprint
in one of the 128 orientation patterns. These 128 orientations are learned
from orientation patches obtained from the NIST SD-4 database, followed by
training each of the 128 orientation classes of ConvNet by 10,000 fingerprint
patches from the NIST SD-24 database [48]. The architecture for the trained
ConvNet is as follows:

[Conv-1 Pool-1 Conv-2 Pool-2 Conv-3 fc output]

ReLu activations are used in each convolution layer followed by max-pooling
layers. To introduce sparsity, dropout regularization is used after the fully
connected fc layer.

For a probe latent fingerprint, a 160× 160 patch from the foreground seg-
mented latent fingerprint is fed into the trained ConvNet model. Orientation
field is predicted and enhanced further using Gabor filtering. The experi-
ments are performed on the NIST SD-27 [8] database. On the complete data
set, the average root mean square deviation of 13.51 is reported, which is
the lowest deviation in comparison to the other popular algorithms such as
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TABLE 9.2
Characteristics of existing latent fingerprint databases

Number of

Database Classes Images Characteristics

NIST SD-27A
[41]

258 258 Latent to rolled fingerprint match-
ing. Contains 500 PPI and 1000 PPI
exemplars. Manually annotated fea-
tures are also available.

IIIT-D Latent
Fingerprint
[42]

150 1046 Latent fingerprint with mated 500
PPI and 1000 PPI exemplars, slap
images of 500 PPI. Latent images
are lifted using black powder dust-
ing process and captured directly us-
ing a camera.

IIIT-D
SLF [43]

300 1080 Simultaneous latent fingerprint with
mated slap 500 PPI exemplars, two
sessions of simultaneous latent fin-
gerprint are lifted using black pow-
der dusting.

MOLF
Database [44]

1000 19,200 Dap, slap, latent and simultaneous
latent fingerprints. Manually anno-
tated features available.

WVU Latent
Fingerprint
[45]

449 449 500 PPI and 1000 PPI images
of latent fingerprints with manu-
ally annotated features for latent
to rolled fingerprint matching. How-
ever, database is not publicly avail-
able.

ELFT-EFS Public
Challenge #2 [46]

1100 1100 500 PPI and 1000 PPI images in
WSQ compressed format with man-
ually annotated features. Database
not publicly available.

LocalizedDict [49]. A rank-10 accuracy of 77.0% is obtained when latent fin-
gerprints from NIST SD-27 database, which are enhanced using the proposed
algorithm, are matched using a COTS system.

Sankaran et al. [50] proposed the first automated approach for minutia
extraction from latent fingerprints using a stacked denoising sparse autoen-
coder (SDSAE). SDSAE learns a sparse complex nonlinear feature represen-
tation of the noisy input data. Once the latent fingerprint patch descriptor
is learned, a softmax-based binary supervised classifier is learned to classify
every image patch as a minutia or non-minutia patch. An autoencoder
with an architecture of [4096 1200 30 2 30 1200 4096 ] is trained using
20, 176, 436 patches of size 64 × 64 obtained from a heterogenous data set
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of CASIA-FingerprintV5 [3], NIST SD-14 v2 [51], FingerPass [52], and
MCYT [53]. On the NIST SD-27 database, minutiae-patch detection accu-
racy of 65.18% is obtained along with a rank-10 identification accuracy of
33.61% using NIST Biometric Imaging Software (NBIS) matcher.

Recently, Tang et al. [54] used fully FCN [55] and CNN instead of hand-
crafted features for minutia detection. The proposed algorithm primarily
has two steps: (1) generating candidates using a FCN on the input latent
fingerprint image and (2) classifying candidates and estimating orientation.
In addition to these two steps, each step also aims to get accurate coordi-
nates of the minutia points with its multitask loss function. For generating
candidates, a pretrained ZF-net [56], VGGNet [57], or residual-net [58] is used
along with the classification and regression layer, as follows:

⎡

⎢
⎣

[ZF/V GG/Residual
{
(Conv: 256 (3× 3)filters) (Conv: 2 (1× 1)filters) : Classification
(Conv: 256 (3× 3)filters) (Conv: 2 (1× 1)filters) : Location

}

⎤

⎥
⎦

To classify the proposals and to estimate the orientation, the pretrained mod-
els are connected to a pooling and softmax layer, as follows:

[

ZF/V GG/Residual pooling(6× 6)

{
fc softmax(2) : Classification

fc fc(3) : Location and Orientation

}]

The network is trained on 129 latent prints from NIST SD-27 and an additional
4205 latent fingerprint images collected by China’s police department from
crime scenes. The database is tested on other 129 images of the NIST SD-27
database, and the precision and recall rate of 53.4% and 53.0%, respectively,
are reported.

9.3 Latent Fingerprint Minutiae Extraction Using
Group Sparse Autoencoder

In this section, we present a state-of-the-art approach for extracting minutiae
from latent fingerprint images using group sparse autoencoder (GSAE) [59].
The primary idea is to use group sparse constraint in autoencoders so as to
better distinguish between the minutia and nonminutia patches from latent
fingerprints. It can be observed from Figure 9.6a that the local region around
a minutia has a different ridge structure than a nonminutia patch. However,
as shown in Figure 9.6b, latent fingerprint minutia patches lack a definite
structure, making it challenging to learn meaningful information. Because
of the nonuniform and uncertain variations in latent fingerprints, it has
been challenging for researchers to define a model for extracting minutiae.
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Minutia
patches

Nonminutia
patches

Minutia
patches

Nonminutia
patches

(a) (b)

FIGURE 9.6
(a) High-quality fingerprint patches illustrating the difference in the ridge
structure between minutia and nonminutia patches. (b) Local patches from
latent fingerprints illustrating the lack of well-defined structures and noisy
ridge patterns.

Human-engineered features such as gradient information and frequency-based
information, provide limited performance because of the presence of back-
ground noise. Figure 9.7 illustrates the three main stages of the proposed
GSAE-based latent fingerprint-minutia extraction algorithm.

1. Pretraining : In the first stage, lots of high-quality fingerprint image
patches are used to pretrain a GSAE by preserving group sparsity,
as follows,

J(W ) = argmin
W,U

[||X − Uφ(WX)||22
+ λ(||WXhqm||2,1 + ||WXhqnm||2,1)] (9.1)

where, Xhqm and Xhqnm represent the high-quality fingerprint
minutia and nonminutia patches. The regularization term ensures
that the group sparsity is preserved within the minutia and non-
minutia patches.

2. Supervised fine-tuning : In the second stage, labeled latent finger-
print image patches are used to fine-tune the GSAE. Further, a
binary classifier (2ν-SVM) is trained using the extracted patches to
differentiate between minutia patches and nonminutia patches.

3. Testing : In the third stage, the learned feature descriptor and
the trained classifier are tested. An unknown latent fingerprint is
divided into overlapping patches, a feature descriptor for each patch
is extracted using the proposed fine-tuned GSAE algorithm, and
then classified using the trained 2ν-SVM classifier.

For a latent fingerprint image for which minutia points need to be detected,
the image is first divided into overlapping (16 pixels) patches of size 64× 64.
We have used 2ν-SVM [61] with radial basis function kernel for classification.
2ν-SVM is a “cost-sensitive” version of SVM that penalizes the training errors
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FIGURE 9.7
Architecture of the proposed minutiae-extraction algorithm using GSAE: (a)
Pretraining, (b) supervised fine-tuning, and (c) testing.

of one class more than the other by assigning class specific weights to both the
classes. This explicit penalty minimizes the false-negatives, while restricting
the false-positives below a certain significance level. Hence, in the case of
imbalanced class data or different cost of error, different importance can be
given to the two types of errors, making sure that the majority class is not
creating a bias. Further, in case of c-class classification problems, c different
binary classifiers are created using the “one-vs-all” approach to train binary
2ν-SVMs. The primal form of 2ν-SVM optimization function [61] is given as
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min
w,b,ψ,ρ

1

2
||w||2 − νρ+ γ

n

∑

i∈I+

ψi +
1− γ
n

∑

i∈I−

ψi (9.2)

such that, (1) yi(k(w, xi) + b) ≥ ρ−ψi, (2) ψi ≥ 0, and (3) ρ ≥ 0. Here, w is
the decision boundary, x are the support vectors, y are the corresponding class
labels, k(w, xi) is the kernel function, ψi are the slack variables, γ ∈ {0, 1} is a
parameter controlling the trade-off between false-positives and false-negatives,
and i = {1, 2, . . . , n} for n support vectors.

9.3.1 Experimental protocol

GSAE requires training with a large number of minutia and nonminutia
patches from the fingerprint images. These images are taken from a combined
data set of CASIA-FingerprintV5 [3], NIST SD-14 v2 [51], FingerPass [52],
and MCYT [53]. The description and properties of these data sets are sum-
marized in Table 9.3. To make the feature learning supervised, minutiae are
extracted from all the fingerprints using an open source minutia extractor
mindtct of the NIST Biometric Imaging Software NBIS [62]. An image patch
of size 64× 64 (w = 64) is extracted with minutia at the center, thereby cre-
ating 10,088,218 minutia patches extracted from all the images. From every
fingerprint, the same number of nonminutia patches and minutia patches are
extracted to ensure same number of samples from both the classes. A stacked
group sparse autoencoder is designed with the network layer sizes as {4096,
3000, 2000, 1000, 500}. With a mini-batch size of 10,000 image patches, we
pretrained each layer for 40,000 epochs and then performed 10,000 epochs for
fine-tuning. The architecture is trained with raw image intensities of these
image patches (vector size 1 × 4096) as input. For evaluation, two publicly
available latent fingerprint databases are used: NIST SD-27 and MOLF.

The primary objective is correctly extracting minutiae from latent finger-
print images. Therefore, the performance metric used in all these experiments
is Correct Classification Accuracy (CCA), which denotes the ratio of correctly

TABLE 9.3
Summary of the composition and characteristics of the heterogeneous
fingerprint database

No. of No. of
Database Capture type images minutiae

NIST SD-14 v2 [60] Card print 54,000 8,188,221
CASIA-FingerprintV5 [3] Optical 20,000 515,641
MCYT [53] Optical, capacitive 24,000 571,713
FingerPass [52] Optical, capacitive 34,560 812,643
Total 132,560 10,088,218

Note: This heterogeneous database is used as the pretraining data set for the proposed deep
learning approach.
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classified patches with the total number of patches. The overall accuracy
is further split into class-specific classification accuracy: Minutia Detection
Accuracy (MDA) and Nonminutia Detection Accuracy (NMDA). In terms of
MDA and NMDA, although both the accuracies should be high, it is impor-
tant to detect all the minutia patches accurately along with minimizing the
occurrence of spurious minutia patches.

9.3.2 Results and analysis

The performance of the proposed approach is evaluated in terms of CCA,
MDA, and NMDA on two different data sets, NIST SD-27 and MOLF, under
four different experimental scenarios:

• Using VeriFinger [63], a popular commercial tool for fingerprints,

• Using the proposed architecture with only KLD,

• Using the proposed architecture with only GSAE, and

• Using the proposed architecture with KLD + GSAE.

We also compared the results with the current state-of-the-art algorithm pro-
posed by Sankaran et al. [50]. Our proposed algorithm outperforms all the
existing algorithms with a CCA of 95.37% and 90.74% on the NIST SD-27
and IIIT MOLF data set, respectively. The results on the NIST SD-27 and
IIITD MOLF data set are summarized in Table 9.4, respectively. Further, in
Table 9.5, we tabulate the approach and results of all the existing research
works in literature. It is to be duly noted that in Table 9.5, the experimental
protocols and data sets are different across the research works and thus can-
not be directly compared and no strong conclusion can be drawn. However, it
shows strong promises of deep learning toward automated latent fingerprint
recognition.

TABLE 9.4
Classification results (%) obtained on the NIST SD-27 and MOLF latent
fingerprint data sets

Database Algorithm Classifier CCA MDA NMDA

NIST SD-27 [41] VeriFinger VeriFinger 90.33 20.41 96.80
Sankaran et al. [50] Softmax 46.80 65.18 41.21
KLD 2ν-SVM 91.90 91.90 100
GSAE 2ν-SVM 94.48 94.48 100
KLD + GSAE 2ν-SVM 95.37 95.37 100

IIIT MOLF [44] VeriFinger VeriFinger 78.52 21.33 92.92
KLD 2ν-SVM 59.25 84.17 52.97
GSAE 2ν-SVM 90.14 90.44 90.07
KLD + GSAE 2ν-SVM 90.74 90.63 90.37

CCA, Correct Classification Accuracy; MDA, Minutia Detection Accuracy; NMDA,
Nonminutia Detection Accuracy.
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As shown in Table 9.4, the CCA for patches from the NIST SD-27 database
is as high as 95% with the KLD + GSAE algorithm. It is approximately 5%
higher compared to VeriFinger. However, the MDA of VeriFinger is about
20%, signifying that it rejects a lot of genuine minutia patches. Compared
to Sankaran et al. [50], our proposed algorithm has an improvement of more
than 30%. In regard to the accuracy of detection of nonminutiae patches, our
algorithm outperforms both VeriFinger and Sankaran et al. [50] with 100%
accuracy. The high accuracy of GSAE can be credited to 2ν-SVM classifica-
tion, which supports in making the false-positive error almost zero.

On the IIITD MOLF database, the accuracy is higher for the proposed
algorithm KLD+GSAE algorithm. However, the accuracy of detection of non-
minutiae patches is better by VeriFinger. The performance of the proposed
algorithm on the MOLF database is not as good as on the NIST SD-27 because
the number of testing data points on the MOLF database is colossal compared
to the NIST SD-27 data set, and there are significant variations in the char-
acteristics of the two databases.

9.4 Deep Learning for Fingerphoto Recognition

With increase in the usage of smartphones, the number of applications for
various tasks such as banking, gaming, and Internet surfing has increased.
Smartphones and other handheld devices have become one of the largest store
houses of personal and critical information. Use of biometrics is a popular and
successful mechanism to secure personal content and provide access control
to handheld devices. As the name handheld devices suggests, the device is
held in the hand most often, and hence the use of fingerprints to authenticate
access seems rather intuitive. Though fingerprint authentication in itself is
quite secure, it includes an overhead of the cost of an additional sensor and
not all the smartphones have inbuilt fingerprint sensors. To overcome such
a challenge, capturing the photo of the finger in a contactless fashion using
the existing rear camera of a handheld device provides a viable alternative
to fingerprints. Such contactless images of finger-ridge impression captured
using a camera are called as fingerphoto [64]. However, the research in terms
of fingerphoto authentication is still in its preliminary stages [11,24,65–68],
and none of the existing works leverage the use of deep learning for extracting
learned representation from fingerphoto images.

9.4.1 Fingerphoto matching using deep ScatNet

In this section, we present a novel authentication methodology for fingerpho-
tos [9], which includes a novel feature representation based on Scattering Net-
works (ScatNet) [69]. The main steps of the algorithm are: (1) segmentation
and enhancement, (2) ScatNet feature representation, and (3) feature match-
ing. An adaptive skin-color–based segmentation is performed in the CMYK
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(a) (b) (c) (d)

FIGURE 9.8
(a) Acquired image in natural outdoor environment, (b) segmented image
after removing the background, (c) enhanced image to remove illumination
noise, and (d) ScatNet feature representation for the enhanced image.

scale to segment the captured finger region from the noisy background. From
the obtained region, an edge trace is performed on the boundary of the finger
to extract an exact region of interest and a bounding box is made. The image
is then enhanced to make ridge-valley information more distinctive and han-
dle factors such as varying illumination and noise. Image is first converted to
gray scale and median filtering is performed. In the next step, ridge-valley pat-
tern is enhanced by sharpening, which involves subtracting Gaussian blurred
image of σ = 2 from the original image. The output of segmentation and
enhancement is shown in Figure 9.8.

For feature extraction, we want a representation that is not only rotation
and translation invariant, but also preserves the high-frequency information
contained in the fingerprint (ridges). We propose ScatNet-based feature repre-
sentation [69], which has the property to encode and preserve high-frequency
information and hence it is known to perform well on texture patterns. Let
x be the input image signal in R2 dimension. A representation that is locally
affine invariant can be achieved by applying a low pass averaging filter as
follows:

φj(u) = 2−2jφ(2−ju) (9.3)

The representation obtained using such a filter is known as level zero ScatNet
representation and is given as follows:

S0x(u) = x � φj(u) (9.4)

Though the representation is translation invariant, it loses high-frequency
information as a result of averaging. To retain high-frequency information
as well, a wavelet bank ψ is constructed by varying the scale and rotation
parameter θ. The high frequency band pass wavelet filter is given as:

ψθ,j = 2−2jψ(2jrθu) (9.5)

and the wavelet modulus for high-frequency components is given as follows:

|x �ψλ1(u)| (9.6)
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Applying absolute function and taking the magnitude can be compared to
the nonlinear pooling functions used in CNNs. To produce an affine invariant
representation of these high-frequency components, a low pass filter is again
applied to obtain first-order ScatNet features as follows:

S1x(u, λ1) = |x �ψλ1
(u)| � φj(u) (9.7)

First-order ScatNet features are a concatenation of responses of all wavelets
in filter bank ψ. The signal can be further convolved recursively by another
set of high pass wavelet filter banks and averaged by an averaging filter to
obtain higher order ScatNet features.

S2x(u, λ1, λ2) = ||x �ψλ1
(u)| �ψλ2

(u)| � φj(u) (9.8)

The final feature representation for input signal x is the concatenation of all
n-order coefficients (responses from all layers) and is given as S= {S0,
S1, . . . , Sn}. In our experiments, we used n = 2. Because these filters are
predesigned, there is no extensive training required like a CNN. ScatNet fea-
tures for a sample fingerphoto image from the ISPFDv1 database [9] are shown
in Figure 9.8.

Given a 1×N length vectorized ScatNet representation for the probe (P )
and the gallery (G), a supervised binary classifier C : X → Y is used to classify
an input pair as a match or a nonmatch pair. The classifier learns to classify
a pair of ScatNet feature representations input in the form X = P − G as a
match (Y = 1) or a nonmatch (Y = 0) pair. The classifier can be considered
as a nonlinear mapping learned over the difference of the probe (P) and the
gallery (G) representation as follows:

M(P,G) =

{
1 fθ(dL2(P,G)) ≥ t

0 fθ(dL2(P,G)) < t
(9.9)

In our algorithm, we have used a random decision forest (RDF) as the non-
linear binary classifier [70,71]. The intuition behind the use of RDF for our
problem is that RDF is known to perform well [72] in the presence of highly
uncorrelated features.

9.4.2 Experimental protocol

Because the application of fingerphotos can range from device unlocking
(gallery: fingerphotos) to banking applications (gallery: live-scan or inked
prints), we have performed the following two experiments:

• Expt1: fingerphoto to fingerphoto matching

• Expt2: fingerphoto to live-scan matching

The experiments are performed using ISPFDv1 [9]. For both the scenarios,
we match the gallery with all four fingerphoto subsets, namely, WI, WO, NI,
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and NO. Such a matching is performed because fingerphotos can be captured
anywhere and under any illumination. For the experiments, the segmented
images are resized to 400 × 840 after which the second level ScatNet fea-
tures are extracted. To reduce the dimensionality of the extracted features
and make the algorithm feasible for mobile platform, PCA is applied by pre-
serving 99% Eigen energy. Principal components are then matched using the
L2 distance metric or RDF classifier. We have also compared the performance
of our proposed algorithm, ScatNet+PCA+RDF matching, with the state-
of-the-art fingerprint-matching techniques, namely (1) CompCode [73] and
(2) minutia-based matching (minutia from VeriFinger and matching using
MCC descriptors [16]).

9.4.3 Results and analysis

9.4.3.1 Expt1: Fingerphoto to fingerphoto matching

In this experiment, WI is used as the gallery assuming that the user enrolls his
or her fingerphoto in a controlled environment. The subset WI is matched with
WO, NI, and NO independently. To perform a baseline experiment, we split
the WI subset equally in two parts to match indoor with indoor images. Each
of these results show the impact of changing environment during acquisition.
Matching WI-WO demonstrates the impact of varying illumination; WI-NI
matching illustrates the impact of changing backgrounds whereas WI-NO
indicates the effect of varying background and illumination simultaneously.
The results of these experiments are summarized in Tables 9.6 and 9.7.

Using ScatNet features, the proposed learning-based matching gives EER
in the range of 3%–10%. The performance is much better compared to all
the other matching approaches. The corresponding Receiver Operating Char-
acteristic (ROC) graphs for ScatNet+PCA+RDF matching are shown in
Figure 9.9.

9.4.3.2 Expt2: Fingerphoto to live-scan matching

In this experiment, LS (live-scan subset) is used as the gallery and the
probe subsets are fingerphoto data subsets WI, WO, NI, and NO. To have

TABLE 9.6
EER (%) of the proposed algorithm for fingerphoto-fingerphoto
matching

Gallery Probe ScatNet+L2 ScatNet+PCA+RDF

Expt1 WI WO 18.83 5.07
NI 19.75 7.45
NO 18.98 3.65

WI/2 WI/2 28.42 6.00
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TABLE 9.7
EER (%) of the proposed algorithm for fingerphoto-fingerphoto matching in
comparison to matching based on CompCode and MCC descriptors

MCC ScatNet+PCA
Gallery Probe CompCode descriptors +RDF

Expt1 WI WO 6.90 22.12 5.07
NI 5.02 21.33 7.45
NO 5.31 21.52 3.65

WI/2 WI/2 6.61 37.25 6.00
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FIGURE 9.9
ROC for ScatNet+PCA+RDF based matching method for (a) fingerphoto-
to-fingerphoto matching (Expt1) and (b) live scan-to-fingerphoto matching
(Expt2).

TABLE 9.8
EER (%) of the proposed algorithm for live scan-fingerphoto matching

Gallery Probe ScatNet+L2 ScatNet+PCA+RDF

Expt2 LS WO 18.95 7.12
NI 18.59 10.43
NO 19.18 10.38
WI 19.38 7.07
WI/2 49.51 5.53

a comparative analysis across different galleries, we also performed LS-WI/2
matching. The results of fingerphoto to live-scan matching are reported in
Tables 9.8 and 9.9.

In this case, LS-WO and LS-WI performs the best. It is because the plain
white background makes segmentation easier. Similarly, matching probe NI
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TABLE 9.9
EER (%) of the proposed algorithm for live scan-fingerphoto matching in
comparison to matching based on CompCode and MCC descriptors

MCC ScatNet+PCA
Gallery Probe CompCode descriptors +RDF

Expt2 LS WO 14.74 12.92 7.12
NI 10.60 18.05 10.43
NO 11.38 12.76 10.38
WI 14.58 29.92 7.07

WI/2 21.07 31.01 5.53

images has the lowest in both Expt1 and Expt2. The close background can be
one of the reasons for such performance because a closer background to skin
in the fingerphoto makes segmentation challenging.

While performing fingerphoto-fingerphoto matching, it can be observed
that WI-NO gives the best matching performance. In the case of live scan-
fingerphoto matching, LS-WO performs the best. It is because outdoor
illumination has a uniform surrounding illumination compared to focused
illumination indoors due to which shadows are formed. The results show that
when matching probe NI images with the WI gallery images, the performance
is the lowest in both Expt1 and Expt2. The close background can be one of
the reasons for such performance because a closer background to skin in the
fingerphoto makes segmentation challenging.

9.5 Summary

In this chapter, we have studied two specific challenging cases of uncon-
trolled fingerprint capture: latent fingerprints and fingerphoto images. We
have highlighted the need for using deep representation learning algorithms
to extract more robust features for uncontrolled fingerprints. We present a
thorough literature study on the use of deep learning in matching controlled
and uncontrolled fingerprints. We present a deep GSAE-based latent finger-
print matching and deep ScatNet-based fingerphoto matching algorithms are
also presented. Experimental analysis and comparison with existing algo-
rithms demonstrate the promises of deep learning for unconstrained fingerprint
matching. Further, research in this domain can be directed toward building
a lights-out system using deep neural architectures and building larger data
sets. The results of the proposed approach is tabulated and compared with the
existing approaches, showing an improvement in performance in the publicly
available data sets.



Learning Representations for Unconstrained Fingerprint Recognition 221

References

1. Report reveals fingerprints dominate global biometrics market. http://
www.biometricupdate.com/201703/report-reveals-fingerprints-dominate-
global-biometrics-market. [Accessed March 10, 2017].

2. D. Maltoni, D. Maio, A. Jain, and S. Prabhakar. Handbook of Fingerprint
Recognition. Springer Science & Business Media, London, UK, 2009.

3. CASIA-Fingerprint V5. Chinese Academy of Sciences Institute of Au-
tomation (CASIA) Fingerprint Image Database Version 5.0.

4. H. C. Lee and R. E. Gaensslen. Methods of latent fingerprint development.
Advances in Fingerprint Technology, 2:105–176, 2001.

5. P. Komarinski. Automated Fingerprint Identification Systems (AFIS).
Academic Press, Burlington, MA, 2005.

6. H. C. Lee and R. E. Gaensslen. Methods of latent fingerprint development.
In Advances in Fingerprint Technology, 2nd ed., pp. 105–175. CRC Press,
Boca Raton, FL, 2001.

7. C. Wilson. Fingerprint vendor technology evaluation 2003: Summary of
results and analysis report, NISTIR 7123, 2004. http://fpvte.nist.gov/
report/ir 7123 analysis.pdf.

8. M. D. Garris and R. M. McCabe. Fingerprint minutiae from latent and
matching tenprint images. In Tenprint Images, National Institute of Stan-
dards and Technology. Citeseer, 2000.

9. A. Sankaran, A. Malhotra, A. Mittal, M. Vatsa, and R. Singh. On smart-
phone camera based fingerphoto authentication. In International Confer-
ence on Biometrics Theory, Applications and Systems, pp. 1–7. IEEE,
2015.

10. M. Vatsa, R. Singh, A. Noore, and S. K. Singh. Combining pores and
ridges with minutiae for improved fingerprint verification. Signal Process-
ing, 89(12):2676 – 2685, 2009. Special Section: Visual Information Analysis
for Security.

11. G. Li, B. Yang, M. A. Olsen, and C. Busch. Quality assessment for finger-
prints Collected by Smartphone Cameras. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
pp. 146–153, 2013.

12. A. Sankaran, M. Vatsa, and R. Singh. Latent fingerprint matching: A
survey. IEEE Access, 2(982–1004):1, 2014.

http://www.biometricupdate.com/201703/report-reveals-fingerprints-dominate-global-biometrics-market
http://www.biometricupdate.com/201703/report-reveals-fingerprints-dominate-global-biometrics-market
http://www.biometricupdate.com/201703/report-reveals-fingerprints-dominate-global-biometrics-market
http://fpvte.nist.gov/report/ir_7123_analysis.pdf
http://fpvte.nist.gov/report/ir_7123_analysis.pdf


222 Deep Learning in Biometrics

13. M. Puertas, D. Ramos, J. Fierrez, J. Ortega-Garcia, and N. Exposito.
Towards a better understanding of the performance of latent fingerprint
recognition in realistic forensic conditions. In International Conference on
Pattern Recognition, pp. 1638–1641. IAPR, Istambul, Turkey, 2010.

14. D. Lee, K. Choi, and J. Kim. A robust fingerprint matching algorithm us-
ing local alignment. In International Conference on Pattern Recognition,
Vol. 3, pp. 803–806. IAPR, 2002.

15. R. Mueller and R. Sanchez-Reillo. An approach to biometric identity
management using low cost equipment. In International Conference on
Intelligent Information Hiding and Multimedia Signal Processing,
pp. 1096–1100. IEEE, 2009.

16. R. Cappelli, M. Ferrara, and D. Maltoni. Minutia cylinder-code: A new
representation and matching technique for fingerprint recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(12):2128–
2141, 2010.

17. M. H. Izadi and A. Drygajlo. Estimation of cylinder quality measures from
quality maps for minutia-cylinder code based latent fingerprint matching.
In ENFSI Proceedings of Biometric Technologies in Forensic Science (No.
EPFL-CONF-189764, pp. 6–10), 2013.

18. R. P. Krish, J. Fierrez, D. Ramos, J. Ortega-Garcia, and J. Bigun.
Pre-registration for improved latent fingerprint identification. In Interna-
tional Conference on Pattern Recognition, pp. 696–701. IAPR, Stockholm,
Sweden, 2014.

19. R. P. Krish, J. Fierrez, D. Ramos, J. Ortega-Garcia, and J. Bigun. Pre-
registration of latent fingerprints based on orientation field. IET Biomet-
rics, 4(2):42–52, 2015.

20. A. A. Paulino, E. Liu, K. Cao, and A. K. Jain. Latent fingerprint indexing:
Fusion of level 1 and level 2 features. In International Conference on
Biometrics: Theory, Applications and Systems, pp. 1–8. IEEE, 2013.

21. A. K. Jain and J. Feng. Latent fingerprint matching. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 33(1):88–100, 2011.

22. B. Y. Hiew, A. B. J. Teoh, and O. S. Yin. A secure digital camera based
fingerprint verification system. Journal of Visual Communication and
Image Representation, 21(3):219–231, 2010.

23. A. Kumar and Y. Zhou. Contactless fingerprint identification using level
zero features. In Computer Vision and Pattern Recognition Workshops,
pp. 114–119. IEEE, 2011.



Learning Representations for Unconstrained Fingerprint Recognition 223

24. K. Tiwari and P. Gupta. A touch-less fingerphoto recognition system
for mobile hand-held devices. In International Conference on Biometrics,
pp. 151–156. IEEE, 2015.

25. P. Baldi and Y. Chauvin. Neural networks for fingerprint recognition.
Neural Computation, 5(3):402–418, 1993.

26. V. K. Sagar and K. J. B. Alex. Hybrid fuzzy logic and neural network
model for fingerprint minutiae extraction. In International Joint Confer-
ence on Neural Networks, Vol. 5, pp. 3255–3259. IEEE, 1999.

27. M. Sahasrabudhe and A. M. Namboodiri. Learning fingerprint orientation
fields using continuous restricted boltzmann machines. In Asian Confer-
ence on Pattern Recognition, pp. 351–355. IAPR, Okinawa, Japan, 2013.

28. M. Sahasrabudhe and A. M. Namboodiri. Fingerprint enhancement using
unsupervised hierarchical feature learning. In Indian Conference on Com-
puter Vision Graphics and Image Processing, p. 2. ACM, Scottsdale, AZ,
2014.

29. R. Wang, C. Han, Y. Wu, and T. Guo. Fingerprint classification based on
depth neural network. arXiv preprint arXiv:1409.5188, 2014.

30. S. Minaee and Y. Wang. Fingerprint recognition using translation
invariant scattering network. In Signal Processing in Medicine and Biology
Symposium, pp. 1–6. IEEE, 2015.

31. L. Jiang, T. Zhao, C. Bai, A. Yong, and M. Wu. A direct fingerprint
minutiae extraction approach based on convolutional neural networks. In
International Joint Conference on Neural Networks, pp. 571–578. IEEE,
2016.

32. D. Michelsanti, Y. Guichi, A.-D. Ene, R. Stef, K. Nasrollahi, and T. B.
Moeslund. Fast fingerprint classification with deep neural network. In
Visapp-International Conference on Computer Vision Theory and Ap-
plications, Porto, Portugal, 2017.

33. L. Sifre and S. Mallat. Rotation, scaling and deformation invariant scat-
tering for texture discrimination. In Conference on Computer Vision and
Pattern Recognition, pp. 1233–1240. IEEE, 2013.

34. The Hong Kong Polytechnic University (PolyU) high-resolution-finger-
print (HRF) Database. http://www4.comp.polyu.edu.hk/∼biometrics/
HRF/HRF old.htm. Accessed December 8, 2016.

35. V. Nair and G. E. Hinton. Rectified linear units improve restricted boltz-
mann machines. In IMLS Proceedings of the Twenty-Seventh International
Conference on Machine Learning, pp. 807–814, 2010.

http://www4.comp.polyu.edu.hk/%E2%88%BCbiometrics/HRF/HRF%20old.htm
http://www4.comp.polyu.edu.hk/%E2%88%BCbiometrics/HRF/HRF%20old.htm


224 Deep Learning in Biometrics

36. D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and A. K. Jain.
FVC2002: Second fingerprint verification competition. In International
Conference on Pattern recognition, Vol. 3, pp. 811–814. IEEE, 2002.

37. D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and A. K. Jain.
FVC2000: Fingerprint verification competition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24(3):402–412, 2002.

38. A. Ng. Sparse autoencoder. CS294A Lecture notes, 72:1–19, 2011.

39. NIST special database 4. https://www.nist.gov/srd/nist-special-
database-4. Accessed December 4, 2016.

40. K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the
devil in the details: Delving deep into convolutional nets. arXiv preprint
arXiv:1405.3531, 2014.

41. Fingerprint minutiae from latent and matching tenprint images. NIST
Special Database 27, 2010.

42. A. Sankaran, T. I. Dhamecha, M. Vatsa, and R. Singh. On matching latent
to latent fingerprints. In International Joint Conference on Biometrics,
Washington, DC, 2010.

43. A. Sankaran, M. Vatsa, and R. Singh. Hierarchical fusion for matching si-
multaneous latent fingerprint. In International Conference on Biometrics:
Theory, Applications and Systems. IEEE, 2012.

44. A. Sankaran, M. Vatsa, and R. Singh. Multisensor optical and latent fin-
gerprint database. IEEE Access, 3:653–665, 2015.

45. A. A. Paulino, J. Feng, and A. K. Jain. Latent fingerprint matching us-
ing descriptor-based hough transform. IEEE Transactions on Information
Forensics and Security, 8(1):31–45, 2013.

46. Evaluation of latent fingerprint technologies. http://www.nist.gov/itl/
iad/ig/latent.cfm.

47. K. Cao and A. K. Jain. Latent orientation field estimation via con-
volutional neural network. In International Conference on Biometrics,
pp. 349–356. IAPR, Phuket, Thailand, 2015.

48. NIST digital video of live-scan fingerprint database - NIST spe-
cial database 24. https://www.nist.gov/srd/nistsd24.html. Accessed
December 10, 2016.

49. X. Yang, J. Feng, and J. Zhou. Localized dictionaries based orientation
field estimation for latent fingerprints. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 36(5):955–969, 2014.

https://www.nist.gov/srd/nist-special-database-4
https://www.nist.gov/srd/nist-special-database-4
http://www.nist.gov/itl/iad/ig/latent.cfm
https://www.nist.gov/srd/nistsd24.html
http://www.nist.gov/itl/iad/ig/latent.cfm


Learning Representations for Unconstrained Fingerprint Recognition 225

50. A. Sankaran, P. Pandey, M. Vatsa, and R. Singh. On latent finger-
print minutiae extraction using stacked denoising sparse autoencoders.
In International Joint Conference on Biometrics, pp. 1–7. IEEE, 2014.

51. NIST special database 14. https://www.nist.gov/srd/nist-special-
database-14. Accessed December 10, 2016.

52. X. Jia, X. Yang, Y. Zang, N. Zhang, and J. Tian. A cross-device matching
fingerprint database from multi-type sensors. In International Conference
on Pattern Recognition, pp. 3001–3004. IEEE, 2012.

53. J. Ortega-Garcia, J. Fierrez-Aguilar, D. Simon, J. Gonzalez, M. Faundez-
Zanuy, V. Espinosa, A. Satue, I. Hernaez, J.-J. Igarza, and C. Vivara-
cho. MCYT baseline corpus: A bimodal biometric database. Proceedings-
Vision, Image and Signal Processing, 150(6):395–401, 2003.

54. Y. Tang, F. Gao, and J. Feng. Latent fingerprint minutia extraction using
fully convolutional network. arXiv preprint arXiv:1609.09850, 2016.

55. J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for
semantic segmentation. In Conference on Computer Vision and Pattern
Recognition, pp. 3431–3440. IEEE, 2015.

56. M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. In European Conference on Computer Vision, pp. 818–833.
Springer, Germany, 2014.

57. K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

58. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385, 2015.

59. A. Sankaran, M. Vatsa, R. Singh, and A. Majumdar. Group sparse au-
toencoder. Image and Vision Computing, 60:64–74, 2017.

60. NIST 8-bit gray scale images of fingerprint image groups (FIGS). NIST
Special Database 14, 2010.

61. M. Davenport, R. G. Baraniuk, C. D. Scott, et al. Controlling false alarms
with support vector machines. In International Conference on Acoustics,
Speech and Signal Processing, Vol. 5, 2006.

62. NBIS (NIST Biometric Image Software). Developed by National Institute
of Standards and Technology. http://www.nist.gov/itl/iad/ig/nbis.cfm.

63. VeriFinger. NeuroTechnology. www.neurotechnology.com/verifinger.html.
Accessed August 10, 2012.

https://www.nist.gov/srd/nist-special-database-14
https://www.nist.gov/srd/nist-special-database-14
http://www.nist.gov/itl/iad/ig/nbis.cfm
http://www.neurotechnology.com/verifinger.html


226 Deep Learning in Biometrics

64. Y. Song, C. Lee, and J. Kim. A new scheme for touchless fingerprint recog-
nition system. In International Symposium on Intelligent Signal Process-
ing and Communication Systems, pp. 524–527. IEEE, 2004.

65. D. Lee, K. Choi, H. Choi, and J. Kim. Recognizable-image selection for
fingerprint recognition with a mobile-device camera. IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics, 38(1):233–243,
2008.

66. G. Li, B. Yang, R. Raghavendra, and C. Busch. Testing mobile phone cam-
era based fingerprint recognition under real-life scenarios. In Norwegian
Information Security Conference, 2012.

67. C. Stein, V. Bouatou, and C. Busch. Video-based fingerphoto recognition
with anti-spoofing techniques with smartphone cameras. In International
Conference of the Biometrics Special Interest Group, pp. 1–12, Darmstadt,
Germany, 2013.

68. C. Stein, C. Nickel, and C. Busch. Fingerphoto recognition with smart-
phone cameras. In IEEE Proceedings of the International Conference of
the Biometrics Special Interest Group, pp. 1–12, 2012.

69. J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 35(8):1872–
1886, 2013.

70. T. K. Ho. Random decision forests. In International Conference on Doc-
ument Analysis and Recognition, Vol. 1, pp. 278–282. IEEE, 1995.

71. T. K. Ho. The random subspace method for constructing decision
forests. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(8):832–844, 1998.

72. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

73. A. W.-K. Kong and D. Zhang. Competitive coding scheme for palmprint
verification. In International Conference on Pattern Recognition, Vol. 1,
pp. 520–523, 2004.



10

Person Identification Using Handwriting
Dynamics and Convolutional Neural
Networks

Gustavo H. Rosa, João P. Papa, and Walter J. Scheirer

CONTENTS

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
10.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

10.2.1 Filter bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
10.2.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
10.2.3 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

10.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
10.3.1 SignRec data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
10.3.2 Modeling time series in CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
10.3.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

10.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
10.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

10.1 Introduction

Biometrics as a discipline within computer vision has emerged as the need
for reliable systems to automatically identify and authenticate people has
increased over the past couple of decades. Because passwords can be stolen
or even discovered by some brute-force method, using the unique characteris-
tics inherent to each individual has become a safe and convenient alternative.
Among the most common and widely used biometric-based information, one
shall cite face, fingerprints, and iris, just to name a few. Although each biomet-
ric modality has its own positive and negative aspects, there is a consensus
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that all of them must be able to withstand spoofing attacks, as well as be
discriminative enough to distinguish different individuals.

An interesting and noninvasive biometric modality that can be used to
identify people is handwriting style. With respect to this modality, one can find
two different possibilities: static or dynamic operation. The former approach,
also known as offline, usually uses the shape of the letters to identify peo-
ple, whereas the latter approach make use of more information than just the
shape of the letters, including the pressure, slope, and time to write each
character down [1,2]. For instance, Sesa-Nogueras and M. Faundez-Zanuy [3]
used self-organizing maps to deal with the problem of stroke identification in
handwriting dynamics, and Sanchez-Reillo et al. [4] evaluated the strengths
and weaknesses of dynamic handwritten-signature recognition against spoof-
ing attacks.

Recently, Zhang et al. [5] presented a review concerning handwritten
Chinese character recognition and established new benchmarks for both online
and offline. Additionally, Ferrer et al. [6] developed a methodology to gen-
erate dynamic information from handwriting recognition, thus providing a
unified comprehensive synthesizer for both static and dynamic signature fea-
tures. Going back further into the literature, Zhu et al. [7] used texture
features to identify writers from Chinese handwritten documents, and Ribeiro
et al. [8] used deep neural networks for offline handwriting recognition. Last
but not least, a group of Brazilian researchers presented interesting advances
concerning offline handwritten recognition in a Brazilian data set for writer
identification [9].

Because deep learning-driven techniques have been extensively pursued in
the last few years, it is quite common to find their usage in a wide variety
of application domains. However, to the best of our knowledge, we have not
observed any work that explores online recognition from handwriting dynam-
ics by means of deep learning techniques, which is the main contribution of
this chapter. In addition to a novel algorithm, we make available a data set
composed of 26 individuals that had their signature captured by means of a
smartpen, for the further analysis of their handwriting skills. The remainder
of this chapter is organized as follows. Section 10.2 briefly reviews the basics
of convolutional neural networks (CNNs). Section 10.3 presents the methodol-
ogy to build the data set and a new CNN-based approach to online handwrit-
ing recognition, and Section 10.4 introduces the related experimental results.
Finally, Section 10.5 states conclusions and future research directions.

10.2 Convolutional Neural Networks

CNNs can be seen as a representation of a bigger class of models based
on the Hubel and Wiesel’s architecture, which was presented in a seminal
study in 1962 concerning the primary cortex of cats. This research identified,
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FIGURE 10.1
A simplified, yet typical CNN architecture.

in essence, two kinds of cells: simple cells, which possess an analogous duty to
the CNN filter bank levels, and complex cells, which perform a similar job
to the CNN sampling step.

The first model that simulated a computer-based CNN was the well-known
“Neocognitron,” [10] which implemented an unsupervised training algorithm
to establish the filter banks, followed by a supervised training algorithm
applied in the last layer. Later on, LeCun et al. [11] simplified this architecture
by proposing the use of the back-propagation algorithm to train the network
in a supervised way. Thus, several applications that used CNNs emerged in
the subsequent decades.

Basically, a CNN can be understood as an N -layered data process-
ing sequence. Thereby, given an input image,∗ a CNN essentially extracts
a high-level representation of it, called a multispectral image, whose pixel
attributes are concatenated in a feature vector for later application of pat-
tern recognition techniques. Figure 10.1 introduces the näıve architecture
of a CNN.

As mentioned, each CNN layer is often composed of three operations: a
convolution with a filter bank, followed by a sampling phase, and then by a
normalization step. As one can observe in Figure 10.1, there is still a possibility
of a normalization operation in the beginning of the whole process. The next
sections describe in more detail each of these steps.

10.2.1 Filter bank

Let Î = (DI , �I) be a multispectral image such that DI ∈ n × n is the image

domain, and �I = {I1(p), I2(p), . . . , Im(p)} corresponds to a pixel p = (xp, yp) ∈
DI , and m stands for the number of bands. When Î is a grey-scale image, for
instance, we have that m = 1 and Î = (DI , I).

Let φ = (A,W ) be a filter with weights W (q) associated with every
pixel q ∈ A(p), where A(p) denotes a mask of size LA × LA, centered

∗The same procedure can be extended to other nonvisual signal processing–based
applications.
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at p, and q ∈ A(p) if, and only if, max{|xq − xp| , |yq − yp|} ≤ (LA − 1)/2.
In case of multispectral filters, their weights can be depicted as vectors
�Wi(q) = {wi,1(q), wi,2(q), . . . , wi,m(q)} for each filter i, and a multispectral

filter bank can be then defined as φ = {φ1,φ2, . . . ,φn}, where φi = (A, �Wi),
i = {1, 2, . . . , n}.

Thus, the convolution between an input image Î and a filter φi generates
the band i of the filtered image Ĵ = (DJ , �J), where DJ ∈ DI and �J =
{J1(p), J2(p), . . . , Jn(p)}, ∀p ∈ DJ :

Ji(p) =
∑

∀q∈A(p)

�I(q)⊗ �Wi(q) (10.1)

where ⊗ denotes the convolution operator. The weights of φi are usually gen-
erated from a uniform distribution, that is, U(0, 1), and afterward normalized
with mean zero and unitary norm.

10.2.2 Sampling

This operation is extremely important for a CNN, which provides translational
invariance to the extracted features. Let B(p) be the sampling area of size
LB × LB centered at p. Additionally, let DK = DJ/s be a regular sampling
operation every s pixels. Therefore, the resulting sampling operation in the
image K̂ = (DK , �K) is defined as follows:

Ki(p) = α

√ ∑

∀q∈B(p)

Ji(q)α (10.2)

where:
p ∈ DK denotes every pixel of the new image

i = {1, 2, . . . , n2}
α stands for the stride parameter, controlling the downsampling factor of

the operation

10.2.3 Normalization

The last operation of a CNN is its normalization, which is a widely employed
mechanism to enhance its perfomance [12]. This operation is based on the
apparatus found on cortical neurons [13], being also defined under a squared-
area C(p) of size LC × LC centered at pixel p, such as:

Oi(p) =
Ki(p)

n∑

j=1

∑

∀q∈C(p)
Kj(q)Ki(q)

(10.3)

Thus, the operation is accomplished for each pixel p ∈ DO ⊂ Dk of the
resulting image Ô = (DO, �O).
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10.3 Methodology

In this section, we present the methodology used to design the data set, as
well as the proposed approach to analyze the pen-based features (signals) by
means of CNNs. In addition, we present the experimental setup as well.

10.3.1 SignRec data set

The SignRec data set,∗ which stands for signature-recognition data set, aims at
characterizing an individual’s writing style as a form, such as the one depicted
in Figure 10.2, is filled out. The idea of the form is to ask a person to perform
some specific tasks so that their writing can be captured by the a set of sensors
from a smartpen and recorded for subsequent analysis.

In this work, we used the Biometric Smart Pen (BiSP R©) [14], which is
a multisensory pen system, capable of recording and analyzing handwriting,
drawing, and gesture movements, regardless of whether they were made on
paper or in the air. The smartpen is intended to monitor hand and finger
motor characteristics and is thus equipped with several measuring sensors,
which are illustrated in Figure 10.3 and described herein:

• CH 1: Microphone

• CH 2: Fingergrip

• CH 3: Axial Pressure of ink refill

• CH 4: Tilt and Acceleration in the “X direction”

• CH 5: Tilt and Acceleration in the “Y direction”

• CH 6: Tilt and Acceleration in the “Z direction”

Unlike common table-based input devices, the BiSP R© data are sampled solely
by the pen, transferring its outputs to devices like PCs, notebooks, and cell
phones, among others. It is able to provide important object-related parame-
ters as well as neuromotor and biometric features from a human being.

The SignRec data set was collected at the Faculty of Sciences, São Paulo
State University, Bauru, Brazil. To build this initial data set,† we used signals
extracted from handwriting dynamics. The data set consists of 26 individuals;
23 are male and 3 are female. Each person was asked to write down their name
using the smartpen starting from left to right. This activity is focused on the

∗http://www2.fc.unesp.br/~papa/recogna/biometric_recognition.html
†Ongoing research is expanding the data set to incorporate random phrases.

http://www2.fc.unesp.br/~papa/recogna/biometric_recognition.html
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FIGURE 10.2
Form used to assess the handwritten skills of a given individual during the
data collection performed for this work.
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FIGURE 10.3
Biometric smartpen: Sensors are located at four different points points
(extracted from Peueker et al. [15]).

analysis of the movement provided by the act of writing a signature, which
quantifies different motor activities and different writing patterns for each
individual. Figures 10.4a and 10.4b depict the signals extracted from three
channels (channels 2, 3, and the average between channels 5 and 6) from two
distinct individuals.

Looking at Figure 10.4, the differences between the two individuals can
clearly be seen by comparing the curves in the plots. Such a difference can
be expressed as a feature space and used by a biometric system to discrimi-
nate between different users. We decided to not use channels 1 and 4 (i.e.,
the microphone and x-axis displacement) because in our experiments we
observed that such channels did not play a big role in distinguishing different
individuals.

10.3.2 Modeling time series in CNNs

We propose to model the problem of distinguishing individuals as an image
recognition task by means of CNNs. Roughly speaking, the signals provided
by the smartpen are transformed into pictures. Each acquisition is com-
posed of r rows (acquisition time in milliseconds) and six columns, which
are for the aforementioned six signal channels (e.g., sensors). In this chap-
ter, we propose to map the signals obtained by the smartpen to images
through the recurrence plot methodology 15, which is a gray-scale image pro-
duced for each channel that captures information from the raw data (but
not features). Therefore, to compose an RGB image, each acquisition ses-
sion needs to be rescaled into three channels, and each channel needs to be
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FIGURE 10.4
Signals recorded from (a) individual 1 and (b) individual 2.

normalized between 0 and 1. As we are trying to identify the writing pattern
of each person, we discarded both channels 1 and 4, because we observed
that the microphone and the displacement in the x-axis are commonly equal
for all acquisition sessions. Finally, regarding the last channel, we employed
an arithmetic mean between channels 5 and 6. Figure 10.5 illustrates some
gray-scale recurrence plot-based images, and Figure 10.6 illustrates their cor-
responding RGB versions. One can observe distinct patterns between different
individuals.
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FIGURE 10.5
Signature gray-scale samples from individual 1: (a) R channel, (b) G channel,
and (c) B channel, and individual 2: (d) R channel, (e) G channel, and (f) B
channel.

(a) (b)

FIGURE 10.6
Signature RGB samples from: (a) individual 1 and (b) individual 2.
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10.3.3 Experimental setup

In this work, we classified signature images drawn by different individuals
using a CNN-based approach. The data set is composed of 260 images, with
10 images per individual. Note that all images were rescaled to 256× 256
pixels for consistency within the experiment. Also, we split our data set into
a training set containing 90% of the images and a testing set containing 10%
of the images.

In regard to the source code, we used the well-known Caffe library∗ [17],
which is developed under a general purpose GPU platform, thus providing
more efficient implementations. Each experiment was evaluated using the
CIFAR10 full† architecture provided by Caffe with a few small modifica-
tions. Because we have larger image resolutions in our data set compared
to the images found in the CIFAR10 data set, we multiplied by 4 the num-
ber of outputs for all convolution layers and we doubled their pads, kernel
sizes, and strides. Also, we are using 1000 training iterations with mini-
batches of size 4, 8, and 16, and a smaller learning rate (0.00001) to avoid
over-fitting.

To provide a statistical analysis by means of a Wilcoxon signed-rank
test with significance of 0.05 [18], we conducted a cross-validation with
20 folds. Figure 10.7 illustrates the proposed architecture. Note that conv
stands for the convolution layer, pool for pooling, relu for rectified lin-
ear unit activation, norm for normalization, ip for inner product or fully
connected layer, accuracy for the final accuracy output, and loss for the
output of the loss function. Additionally, we employed the standard CaffeNet‡

architecture for comparison purposes, using the same hyperparameter values
from CIFAR10 full for training iterations, batch sizes, and learning rate.
Because of the network size, we opted not to employ a figure of its own, how-
ever, one can check the full architecture on its default prototxt file. Finally,
we also evaluated the standard MNIST architecture§ again using the same
hyperparameters, except for the training iterations, where we used half of
the original value (i.e., 5000) to avoid over-fitting. Figure 10.8 illustrates this
architecture.

∗http://caffe.berkeleyvision.org
†https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10 full train

test.prototxt
‡https://github.com/BVLC/caffe/blob/master/models/bvlc reference caffenet/train

val.prototxt
§https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet train test.

prototxt

http://caffe.berkeleyvision.org
https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_full_train_test.prototxt
https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train_val.prototxt
https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet_train_test.prototxt
https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_full_train_test.prototxt
https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train_val.prototxt
https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet_train_test.prototxt
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10.4 Experimental Results

This section aims at presenting the experimental results concerning the
CNN-based person identification. The most accurate results, according to a
Wilcoxon signed-rank test, are in bold. Notice the overall accuracy is com-
puted using the standard formulation, that, (1− errors

data set size )∗100. Table 10.1
displays the mean accuracy results in parenthesis, as well as the maximum
accuracy obtained along the iterations for each configuration of architecture
and batch size.

Because the data set, in its current version, is quite small for a deep learn-
ing environment, the most complex architecture (i.e., CaffeNet) obtained the
worst results, which is expected as a result of the lack of data. On the other
hand, a simple approach did not obtain good results either, as one can observe
in the results over the MNIST data set (although they are still better than the
results from CaffeNet). The best results were obtained by the CIFAR10 full
architecture, which can be seen as a trade-off between the other two archi-
tectures. In all cases, results were above chance, and in many cases, much
higher. However, we can still observe some over-fitting behavior, as displayed
in Figure 10.9.

Figures 10.9a and 10.9b depict the accuracies along the iterations during
the learning process, as well as the values of the loss function along the itera-
tions, respectively. Over-fitting is a consideration in these experiments because
the accuracy starts to drop after 1800 iterations, and the loss function starts
to oscillate after 1400 iterations, before going up. This might be a problem
of having a small amount of data because the data set was meant to serve
as a pilot for experimentation and not large-scale experiments. As mentioned
previously, we are now working on a larger data set, with more individuals and
different handwriting forms. However, the confusion matrices show us some
interesting results, as one can observe in Figure 10.10. Although our results
are preliminary, the confusion matrices showed to be useful to demonstrate

TABLE 10.1
Maximum accuracy (average mean) over the test set

Batch size

4 8 16

CaffeNet 4.04% (7.69%) 4.04% (7.69%) 5.58% (11.54%)

CIFAR10 full 61.54% (50.38%) 61.54% (52.12%) 61.54% (51.92%)

MNIST 34.62% (21.54%) 50.00% (32.88%) 42.31% (28.85%)

Note: Chance performance is approximately 4% for these experiments.
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FIGURE 10.9
Convergence process using CIFAR10 full architecture concerning: (a) accuracy
values and (b) loss function.

the potential in using features learned from CNNs with raw data obtained
by means of a smartpen. Although the proposed approach has mistaken some
individuals, a large number of them were correctly recognized, as one can
observe by the diagonal line, which is well-defined and with a number of
positions colored red.

The batch size did not appear to affect the results considerably, with the
exception of the MNIST data set. By using batches of size 8, the results were
better, but larger batch sizes (i.e., 16) seemed to slow down the convergence,
or even overshoot the local/global minimal with possible oscillatory behaviors.
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Even though other batch sizes could be considered, we believe the data set
size is a hard constraint on performance. We also tried different approaches
to map the raw signals into images, such as a simple concatenation of the
signals, but the results were worse than the ones using recurrence plots, which
we believe are worth further consideration in future work.

10.5 Conclusions

In this work, we dealt with the problem of biometric identification by means of
handwriting dynamics. After designing a data set composed of 26 individuals,
their handwritten features were captured by a smartpen with six sensors.
Further, these signals were mapped into images by means of recurrence plots
and then used as input to CNNs.

This pilot study made two main contributions: the collection and release
of a data set to foster new research on handwriting dynamics-based biometrics
and the evaluation of both CNNs and recurrence plots in this context.
We evaluated three distinct CNN architectures, CIFAR10 full, CaffeNet, and
MNIST, with CIFAR10 full coming out on top as the most promising one. As
a function of data set size, all of the architectures suffered from over-fitting
in some capacity; thus the results still have a ways to go to reach viability
in an operational setting. To address this, we intend to make incremental
updates to the data set to increase its size, as well as to employ ideas beyond
recurrence plots to map signals into CNN parseable images. Nevertheless, this
chapter has shown feasibility for a CNN-based approach to this problem for
a challenging new data set, which will be an excellent resource to researchers
working on handwriting biometrics.
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11.1 Introduction

Biometric authentication is a technology designed to recognize humans auto-
matically based on their behavior, physical, and chemical traits. Recently, this
technology emerged as an important mechanism for access control in many
modern applications, in which the traditional methods including the ones
based on knowledge (e.g., keywords) or based on tokens (e.g., smart cards)
might be ineffective because they are easily shared, lost, stolen, or manipu-
lated [1]. Biometric technologies are increasingly used as the main authenti-
cating factor for access control and also jointly with traditional authentication
mechanisms, as a “step-up authentication” factor in two- or three-factor
authentication systems.

In this context, face, iris, and fingerprint are the most commonly used
biometric traits. In fact, the choice of the trait to be used takes into account
some issues such as universality, easiness to measure the biometric charac-
teristics, performance, or difficulty to circumvent the system [1]. However, a
common disadvantage of these traits is that an impostor might produce a
synthetic replica that can be presented to the biometric sensor to circumvent
the authentication process. In the literature, the mechanisms to protect the
biometric system against this type of attack are referred to as spoofing detec-
tion, liveness detection, or presentation attack detection. Hereinafter, we will
use the most generic term, presentation attack detection (PAD), which was
initially proposed by SC37 experts in ISO/IEC 30107—Presentation Attack
Detection—Framework (Part 1), Data Formats (Part 2), and Testing and
Reporting (Part 3).

The idea of spoofing biometric recognition is surprisingly older than bio-
metrics itself. A careful reader of the Old Testament can find an imperson-
ation attempt described in Genesis, based on presentation of a goat’s fur
put on Jacob’s hand to imitate properties of Esau’s skin, so that Jacob
would be blessed by Isaac. A fictitious example that is surprisingly realistic
is the description of how to copy someone’s fingerprint using a wax mold and
gelatin presented by Austin Freeman in his crime novel The Red Thumb Mark.
The novel appeared in 1907, and the technique described is still used almost
100 years later to spoof fingerprint sensors. Note that this description appeared
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only four years after fingerprints were adopted by Scotland Yard and long
before the first fingerprint sensor appeared on the market.

Recent scientific studies and open challenges such as LivDet (www.livdet.
org) suggest that presentation attacks are still an open problem in biomet-
rics. Phan [2] and Boulkenafet [3] suggest that face-recognition systems are
vulnerable to presentation attacks with an equal error rate (related to distin-
guishing presentation attacks from genuine samples) reaching as high as 9%.
Fingerprint-based recognition systems still face the same problem, with an
average classification error rate achieving 2.9% [4]. Iris-based authentica-
tion, considered by many to be one of the most reliable biometrics, awaits
efficient PAD methodology. Recent proposals in this area still report an aver-
age classification error rate around 1% [5].

Besides the laboratory testing of the biometric system’s vulnerability to
attack, a few real cases also confirm the problem. In the small city of Ferraz de
Vasconcelos, in the outskirts of São Paulo, Brazil, a physician of the service of
mobile health care and urgency was caught red-handed by the police in a scam
that used silicone fingers to bypass an authentication system and confirm the
presence of several colleagues at work [6]. A similar case was investigated by
the Brazilian Federal Police in 2014, when workers at the Paranaguá Harbor
in the Brazilian southern state of Paraná, were suspected of using silicone
fingers to circumvent a time attendance biometric system [7]. In Germany,
the biometric hacking team in the Chaos Computer Club managed to hack
Apple’s iPhone Touch ID [8] a few days after its launch, demonstrating that
a biometric system without an adequate protection is unsuitable as a reli-
able access-control method. Other cases of spoofing surveillance systems with
three-dimensional masks to change their apparent age or race can also be
found in [9,10].

Considering the three aforementioned modalities, when we look at the lit-
erature and analyze the algorithms to prevent presentation attacks, we observe
that the most promising in terms of errors and minimum effort of implemen-
tation or cost often share an interesting feature: they belong to a group of
algorithms referred to as data-driven characterization algorithms. According
to Pinto et al. [11], methods based on data-driven characterization exploit
only the data that come from a standard biometric sensor looking for evi-
dence of artifacts in the already acquired biometric sample. Such approaches
are preferable in practice because they are easily integrable with the exist-
ing recognition systems because there is no extra requirement in terms of
hardware nor is there the need of human interaction to detect attempted
attacks.

Although the existing methods following this idea have led to good
detection rates, we note that some aspects still need to be taken into account
when evaluating a PAD approach (e.g., different types of attack, variety of
devices to perform attempted attacks, and attacks directed to different sen-
sors). Another aspect that is normally overlooked is that most detection

http://www.livdet.org
http://www.livdet.org
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methods are custom-tailored to specific types of presentation attacks, in what
we refer to as hand-crafting of the features. With the emergence of deep learn-
ing methods and their success in tasks such as image classification, voice recog-
nition, and language translation, in this chapter, we set forth the objective
of exploiting deep learning solutions for detecting presentation attacks using
data-driven solutions. In these cases, the biometric designer is responsible for
choosing an appropriate architecture for PAD and training solely from the
existing data available. We believe that this type of solution is the next step
when designing robust presentation attack detectors and also that they can,
if carefully designed, better deal with the challenging cross-dataset scenario.
The cross-dataset scenario arises when the system is trained with a data set
from one sensor or one scenario, and then later tested on data from a different
sensor or scenario. Figure 11.1 depicts the general pipeline we exploit in this
chapter. We start with pretrained deep neural networks and tune them inde-
pendently for each modality (face, iris, and fingerprint) with different data sets
before building the final classifiers to distinguish between authentic images of
faces, irises, and fingerprints from their static counterparts.

We organize the rest of this chapter as follows. Section 11.2 discusses state-
of-the-art methods for PAD considering the three modalities considered in this
chapter (face, iris, and fingerprint). Section 11.3 details the data-driven PAD
solution that we advocate as promising for this problem, and Section 11.5
shows the experiments and validations for different biometric spoofing data
sets. We close the chapter with some final considerations in Section 11.6.

Source problem Target problem Final classification

Image classification

Face identification

Initial network

Face PAD

Iris PAD

Fingerprint PAD

Fine-tuning
domain adaptation

FIGURE 11.1
General pipeline exploited in this work. Initial network architectures,
originally proposed for other problems, are independently fine-tuned with
appropriate PAD examples from different data sets leading to discrimina-
tive features. Ultimately, classifiers are trained to separate between authentic
images of faces, irises, and fingerprints from their presentation attack versions.
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11.2 Related Work

In this section, we review some of the most important PAD methods published
in the literature for iris, face, and fingerprint.

11.2.1 Face PAD

The existing face antispoofing techniques can be categorized into four
groups [12]: user behavior modeling [13,14] (e.g., eye blinking, small face
movements), methods that require additional hardware [15] (e.g., infrared
cameras and depth sensors), methods based on user cooperation (e.g., chal-
lenge questions), and finally, data-driven characterization approaches, which
is the focus of our work herein.

We start this section reviewing frequency-based approaches, which are
methods that rely on analyzing artifacts that are better visible in the fre-
quency domain. Early studies followed this idea [16], and nowadays we have
several works that support the effectiveness of this approach in detecting face
spoofing. Li et al. [16] proposed a face-spoofing detection that emerged from
the observation that the faces in photographs are smaller than the real one,
and that the expressions and poses of the faces in photographs are invariant.
Based on these observations, the authors devised a threshold-based decision
method for detecting photo-based attempted attacks based on the energy
rate of the high-frequency components in the two-dimensional Fourier spec-
trum. The major limitation of the technique proposed by Li et al. is that the
high-frequency components are affected by illumination, which makes this fre-
quency band too noisy [16,17]. To reduce that effect, Tan et al. [17] exploited
the difference of image variability in the high-middle band. This is done using
difference of Gaussian (DoG) bandpass filtering, which keeps as much detail
as possible without introducing noisy or aliasing artifacts.

Pinto et al. [18] introduced an idea seeking to overcome the illumination
effect when working in the frequency domain. In that work, the authors pro-
posed a face antispoofing method for detecting video-based attempted attacks
based on Fourier analysis of the noise signature extracted from videos, instead
of using the image pixel values directly. Basically, after isolating the noise sig-
nal present in the video frames, the authors transformed that information
to the Fourier domain and used the visual rhythm technique to capture the
most important frequency components to detect an attempted attack, tak-
ing advantage of the spectral and temporal information. In a more recent
work [19], the same authors expanded on this technique, taking advantage
of the spectral, temporal, and spatial information from the noise signature
by using the concept of visual codebooks. According to the authors, the new
method enabled them to detect different types of attacks such as print- and
mask-based attempted attacks as well.
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Lee et al. [20] proposed an antispoofing technique based on the cardiac
pulse measurements using video imaging [21]. The authors extended on pre-
vious work proposed by Poh et al. [21] by adding a threshold-based decision
level based on the entropy measure. It was calculated from the power spectrum
obtained from normalized RGB channels after eliminating the cross-channel
noise, caused by the environment interference, using the Independent Com-
ponent Analysis.

Another expressive branch of face antispoofing algorithms reported in the
literature consists of texture-based approaches. In general, those algorithms
exploit textural cues inserted in the fake biometric samples during its pro-
duction and presentation to the biometric sensor under attack (e.g., printing
defects, aliasing, and blurring effects). Tan et al. [17] proposed a texture-based
approach to detect attacks with printed photographs based on the difference
of the surface roughness of an attempted attack and a real face. The authors
estimate the luminance and reflectance of the image under analysis and clas-
sify them using Sparse Low Rank Bilinear Logistic Regression methods. Their
work was extended on by Peixoto et al. [22], who incorporated measures for
different illumination conditions.

Similar to Tan et al. [17], Kose and Dugelary [23] evaluated a solution based
on reflectance to detect attacks performed with printed masks. To decompose
the images into components of illumination and reflectance, the Variational
Retinex [24] algorithm was applied.

Määttä et al. [25,26] relied on microtextures for face-spoofing detection,
inspired by the characterization of printing artifacts and by differences in light
reflection when comparing real samples and presentation attack samples. The
authors proposed a fusion scheme based on the local binary pattern (LBP) [27],
Gabor wavelets [28], and histogram of oriented gradients [29]. Similarly, to
find a holistic representation of the face able to reveal an attempted attack,
Schwartz et al. [12] proposed a method that employs different attributes of
the images (e.g., color, texture, and shape of the face).

Chingovska et al. [30] investigated the use of different variations of the
LBP operator used in Määttä et al. [25]. The histograms generated from these
descriptors were classified using a χ2 histogram comparison, linear discrimi-
nant analysis (LDA), and a support vector machine (SVM).

Face-spoofing attacks performed with static masks have also been consid-
ered in the literature. Erdogmus and Marcel [31] explored a database with six
types of attacks using facial information of four subjects. To detect attempted
attacks, the authors used two algorithms based on Gabor wavelet [32] with a
Gabor-phase based similarity measure [33].

Pereira et al. [34] proposed a score-level fusion strategy for detecting vari-
ous types of attacks. The authors trained classifiers using different databases
and used the Q statistics to evaluate the dependency between classifiers. In a
follow-up work, Pereira et al. [35] proposed an antispoofing solution based on
the dynamic texture, which is a spatiotemporal version of the original LBP.
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Garcia and Queiroz [36] proposed an antispoofing method based on
detection of the Moiré patterns, which appear as a result of the overlap of
the digital grids. To find these patterns, the authors used a peak-detector
algorithm based on maximum-correlation thresholding, in that strong peaks
reveal an attempted attack. Similar to that, Patel et al. [37] proposed a PAD
technique also based on the Moiré pattern detection, which uses the the mul-
tiscale version of the LBP (M-LBP) descriptor.

Tronci et al. [38] exploited the motion information and clues that are
extracted from the scene by combining two types of processes, referred to
as static and video-based analyses. The static analysis consists of combining
different visual features such as color, edge, and Gabor textures, whereas the
video-based analysis combines simple motion-related measures such as eye
blink, mouth movement, and facial expression change.

Anjos and Marcel [39] proposed a method for detecting photo-based
attacks assuming a stationary face-recognition system. According to the
authors, the intensity of the relative motion between the face region and the
background can be used as a clue to distinguish valid access of attempted
attacks because the motion variations between face and background regions
exhibit greater correlation in the case of attempted attacks.

Wen et al. [40] proposed a face spoof-detection algorithm based on image
distortion analysis, describing different features such as specular reflection,
blurriness, chromatic moment, and color diversity. These features are con-
catenate to generate feature vectors, which are used to generate an ensemble
classifier, each one specialized to detect a type of attempted attack.

Kim et al. [41] proposed a method based on the diffusion speed of a single
image to detect attempted attacks. The authors define the local patterns of
the diffusion speed, namely local speed patterns via Total Variation (TV)
flow [42], which are used as feature vectors to train a linear classifier, using
the SVM, to determine whether the given face is fake. In turn, Boulkenafet
et al. [43] proposed an antispoofing technique using a color texture analysis.
Basically, the authors perform a microtexture analysis considering the color-
texture information from the luminance and the chrominance channels by
extracting feature descriptions from different color spaces.

Different from the previous methods, which focus on defining a PAD
that does not leverage the identity information present in the gallery, Yang
et al. [44] proposed a person-specific face antispoofing approach, in which a
classifier was built for each person. According to the authors, this strategy
minimizes the interferences among subjects.

Virtually all previous methods exploit hand-crafted features to analyze
possible clues related to a presentation attack attempt. Whether these features
are related to texture, color, gradients, noise, or even reflection, blurriness,
and chromatic moment, they always come down to the observation of specific
artifacts present in the images and how they can be captured properly. In
this regard, LBP stands out as the staple of face-based spoofing research
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thus far. Departing from this hand-crafted characterization modeling strategy,
a recent trend in the literature has been devoted to designing and deploying
solutions able to directly learn, from the existing available training data, the
intrinsic discriminative features of the classes of interest, the so-called data-
driven characterization techniques, probably motivated by the huge success
these approaches have been showing in other vision-related problems [45,106].
Out of those, the ones based on deep learning solutions stand out right away
as promising for being highly adaptive to different situations.

Menotti et al. [46] aimed at hyperparameter optimization of network
architectures [47,48] (architecture optimization) and on learning filter weights
via the well-known back-propagation algorithm [49] (filter optimization) to
design a face-spoofing detection approach. The first approach consists of learn-
ing suitable convolutional network architectures for each domain, whereas
the second approach focuses on learning the weights of the network via
back-propagation.

Manjani et al. [50] proposed an antispoofing solution based on a deep
dictionary learning technique originally proposed in [51] to detect attempted
attacks performed using silicone masks. According to the authors, deep dic-
tionary learning combines concepts of two most prominent paradigms for rep-
resentation learning, deep learning, and dictionary learning, which enabled
the authors to achieve a good representation even using a small data for
training.

11.2.2 Fingerprint PAD

Fingerprint PAD methods can be categorized into two groups: hardware- and
software-based solutions [52]. Methods falling into the first group use informa-
tion provided from additional sensors to gather artifacts that reveal a spoofing
attack that is outside of the fingerprint image. Software-based techniques rely
solely on the information acquired by the biometric sensor of the fingerprint
authentication system.

Based on several quality measures (e.g., ridge strength or directionality,
ridge continuity), Galbally et al. [53,54] proposed a set of features aiming
at fingerprint PAD, which were used to feed a linear discriminant analysis
classifier.

Gragnaniello et al. [55] proposed an antispoofing solution based on a Weber
Local Descriptor (WLD) operating jointly with other texture descriptors such
as a Local Phase Quantization (LPQ) and LBP descriptor. The experimental
results suggest that WLD and LPQ complement one another, and their joint
usage can greatly improve their discriminating ability, even when compared
individually or combined with LBP.

Inspired by previous works based on an LBP descriptor, Jia et al. [56]
proposed a spoofing-detection scheme based on multiscale block local ternary
patterns (MBLTP) [57]. According to the authors, the computation of the LTP
descriptor is based on average values of block subregions rather than individual
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pixels, which makes it less sensitive to noise because the computation is based
on a three-value code representation and on average values of block subregions,
rather than on individual pixels.

Ghiani et al. [58] proposed the use of binarized statistical image features
(BSIF), a textural binary descriptor whose design was inspired by the LBP
and LPQ methods. Basically, the BSIF descriptor learns a filter set by using
statistics of natural images [59], leading to descriptors better adapted to the
problem. The same authors also explored the LPQ descriptor to find a feature
space insensitive to blurring effects [60].

Gottschlich [61] proposed another idea based on filter-learning convolution
comparison pattern. To detect a fingerprint spoofing, the authors compute the
discrete cosine transform from rotation invariant patches, and compute their
binary patterns by comparing pairs of discrete cosine transform coefficients.
These patterns are gathered in a histogram, which was used to feed a linear
SVM classifier.

Rattani et al. [62] introduced a scheme for automatic adaptation of a
liveness detector to new spoofing materials in the operational phase. The aim
of the proposed approach is to reduce the security risk posed by new spoof
materials on an antispoofing system. The authors proposed a novel material
detector specialized to detect new spoof materials, pointing out the need for
retraining the system with the new material spotted.

Similar to that, Rattani et al. [63] proposed an automatic adaptation anti-
spoofing system composed of an open-set fingerprint spoofing detector and by
a novel material detector, both based on Weibull-calibrated SVM (W-SVM)
[64]. The novel material detector was built with a multiclass W-SVM, com-
posed by an ensemble of pairs of 1-Class and binary SVMs, whereas the open
set fingerprint-spoofing detector was trained with features based on textu-
ral [60], physiological [65], and anatomical [66] attributes.

Gragnaniello et al. [67] proposed a fingerprint-spoofing detection based
on both spatial and frequency information to extract local amplitude con-
trast and local behavior of the image, which were synthesized by considering
the phase of some selected transform coefficients generated by the short-time
Fourier transform. This information generates a bidimensional contrast-phase
histogram, which was used to train a linear SVM classifier.

Kumpituck et al. [68] exploited an antispoofing schema based on wavelet
decomposition and LBP operator. In this work, the authors extract LBP his-
tograms from several wavelet subband images, which were concatenated and
used to feed an SVM classifier. The authors also evaluated a more conventional
approach that consists of calculating the energy from wavelet subbands instead
of the LBP histograms. Experimental results show that wavelet-LBP descrip-
tor achieved a better discrimination than wavelet-energy and LBP descriptors
used separately, besides achieving competitive results with the state-of-the-art
methods.

Finally, also departing from the traditional modeling, which uses basi-
cally texture patterns to characterize fingerprint images, Nogueira et al. [4]



254 Deep Learning in Biometrics

proposed a fingerprint antispoofing technique based on the concept of pre-
trained convolutional neural networks (CNNs). Basically, the authors use
well-known CNN architectures in the literature such as AlexNet [106] and
VGG [105] as their starting point for learning the network weights for
fingerprint-spoofing detection.

Marasco et al. [69] investigated two well-known CNN architectures, the
GoogLeNet [70], CaffeNet [106], to analyze their robustness in detecting
unseen spoof materials and fake samples from new sensors. As mentioned
previously, Menotti et al. [46] also proposed hyperparameter optimization of
network architectures along with filter optimization techniques for detecting
fingerprints presentation attacks.

11.2.3 Iris PAD

Early work on iris-spoofing detection dates back to the 1990s, when Daugman
[71] discussed the feasibility of some attacks on iris-recognition systems. In
that work, he proposed to detect such attempts using the fast Fourier trans-
form to verify the high-frequency spectral magnitude.

According to Czajka [72], solutions for iris-liveness detection can be cat-
egorized into four groups, as Cartesian product of two dimensions: type of
measurement (passive or active) and type of model of the object under test
(static or dynamic). Passive solutions mean that the object is not stimu-
lated more than it is needed to acquire an iris image for recognition purpose.
Hence, it typically means that no extra hardware is required to detect an
attempted attack. Active solutions try to stimulate an eye and observe the
response to that stimuli. It means that typically some extra hardware ele-
ments are required. In turn, the classification between static and dynamic
objects means that the algorithm can detect an attempted attack using just
one (static) image from the biometric sensor or needs to use a sequence of
images to observe selected dynamic features. In this section, we review only
passive and static methods, which is the focus of this chapter.

Pacut Czajka [73] introduced three iris liveness-detection algorithms based
on the analysis of the image frequency spectrum, controlled light reflection
from the cornea, and pupil dynamics. These approaches were evaluated with
paper printouts produced with different printers and printout carriers and
shown to be able to spoof two commercial iris-recognition systems. A small
hole was made in the place of the pupil, and this trick was enough to deceive
commercial iris-recognition systems used in their study. The experimental
results obtained on the evaluation set composed of 77 pairs of fake and live
iris images showed that the controlled light reflections and pupil dynam-
ics achieve zero for both false acceptance rate and false rejection rate. In
turn, two commercial cameras were not able to detect 73.1% and 15.6% of
iris paper printouts and matched them to biometric references of authentic
eyes.
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Galbally et al. [74] proposed an approach based on 22 image quality mea-
sures (e.g., focus, occlusion, and pupil dilation). The authors use sequential
floating feature selection [75] to single out the best features, which were used
to feed a quadratic discriminant classifier. To validate the proposed approach,
the authors used the BioSec [76,77] benchmark, which contains print-based
iris-spoofing attacks. Similarly, Sequeira et al. [78] also exploited image quality
measures [74] and three different classification techniques, validating the work
on BioSec [76,77] and Clarkson [79] benchmarks and introducing the MobBIO-
fake benchmark comprising 800 iris images. Sequeira et al. [80] expanded on
previous work using a feature selection step to obtain a better representation
to detect an attempted attack. The authors also applied iris segmentation [81]
to obtain the iris contour and adapted the feature extraction processes to the
resulting noncircular iris regions.

Wei et al. [82] addressed the problem of iris-liveness detection based
on three texture measures: iris edge sharpness, iris-texton feature for
characterizing the visual primitives of iris texture, and using selected features
based on co-occurrence matrix. In particular, they used fake iris-wearing color
and textured contact lenses. The experiments showed that the edge sharpness
feature achieved comparable results to the state-of-the-art methods at that
time, and the iris texture and co-occurrence matrix measures outperformed
the state-of-the-art algorithms.

Czajka [83] proposed a solution based on frequency analysis to detect
printed irises. The author associated peaks found in the frequency spectrum to
regular patterns observed for printed samples. This method, tuned to achieve
a close-to-zero false rejection rate (i.e., not introducing additional false alarms
to the entire system), was able to detect 95% of printed irises. This paper also
introduced the Warsaw LivDet-Iris-2013 data set containing 729 fake images
and 1274 images of real eyes.

Texture analysis has also been explored for iris-spoofing detection. In the
MobILive [84] iris-spoofing detection competition, the winning team relied on
three texture descriptors: LBP [27], LPQ [85], and binary Gabor pattern [86].
Sun et al. [87] recently proposed a general framework for iris image classifica-
tion based on a hierarchical visual codebook (HVC). The codebook encodes
the texture primitives of iris images and is based on two existing bag-of-words
models. The method achieved a state-of-the-art performance for iris-spoofing
detection, among other tasks related to iris recognition.

Doyle et al. [88] proposed a solution based on a modified LBP [89]
descriptor. In this work, the authors show that although it is possible to
obtain good classification, results using texture information extracted by the
modified LBP descriptor, when lenses produced by different manufacturers
are used, the performance of this method drops significantly. They report
83% and 96% of correct classification when measured on two separated data
sets, and a significant drop in accuracy when the same method was trained on
the one data set and tested on the other data set: 42% and 53%, respectively.
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This cross-dataset validation has been shown to be challenging and seems
to be recommended in several validation setups for PAD. Yadav et al. [90]
expanded on the previous work by analyzing the effect of soft and textured
contact lenses on iris recognition.

Raja et al. [91] proposed an antispoofing method based on eulerian video
magnification, [92] which was applied to enhance the subtle phase information
in the eye region. The authors proposed a decision rule based on cumulative
phase information, which was applied by using a sliding window approach on
the phase component for detecting the rate of the change in the phase with
respect to time.

Raghavendra and Busch [5] proposed a novel spoofing-detection scheme
based on a multiscale version of the BSIF and linear SVM. Gupta et al. [93]
proposed an antispoofing technique based on local descriptors such as
LBP [27], histogram of oriented gradient [29], and GIST [94], which provide
a representation space by using attributes of the images such as color, tex-
ture, position, spatial frequency, and size of objects present in the image.
The authors used the feature vectors produced by the three descriptors to
feed a nonlinear classifier and decide whether an image under analysis is
fake.

Czajka [95] proposed an iris-spoofing detection based on pupil dynamics.
In that work, the author used the pupil dynamics model proposed by Kohn
and Clynes [96] to describe its reaction after a positive light stimuli. To decide
whether the eye is alive, the author used variants of the SVM to classify feature
vectors that contain the pupil dynamic information of a target user. This work
has been further extended to a mixture of negative and positive light stimuli
[72] and presented close-to-perfect recognition of objects not reacting to light
stimuli as expected for a living eye.

Finally, Lovish et al. [97] proposed a cosmetic contact lens detection
method based on LPQ and binary Gabor patterns, which combines the ben-
efits of both LBP and Gabor filters [86]. The histograms produced for both
descriptors were concatenated and used to build a classification model based
on the SVM algorithm.

Similarly to the approaches tackling the presentation attack problem in
fingerprint and faces, hand-crafted texture features seem to be the preferred
choice in iris-spoofing detection. Methods inspired by LBP, visual codebooks,
and quality metrics are the most popular methods so far. In this sense, the
works of Menotti et al. [46] and Silva et al. [98], which exploit data-driven
solutions for this problem, are sufficiently different from the previous methods
and present very promising results.

11.2.4 Unified frameworks to PAD

Galbally et al. [99] proposed a general approach based on 25 image-quality
features to detect attempt attacks in face, iris, and fingerprint biometric sys-
tems simultaneously. Evaluations performed on popular benchmarks for three
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modalities show that this approach is highly competitive, considering the
state-of-the-art methods dedicated for single modalities.

Gragnaniello et al. [100] evaluated several local descriptors for face-,
fingerprint-, and iris-based biometrics in addition to the investigation of
promising descriptors using the Bag-of-Visual-Word model [101], Scale-
Invariant Feature Transform [102], DAISY [103], and the Shift-Invariant
Descriptor [104].

Menotti et al. [46] showed that the combination of architecture opti-
mization and filter optimization provides better comprehension of how these
approaches interplay for face, iris, and fingerprint PAD and also outperforms
the best known approaches for several benchmarks.

In this chapter, we decided to explore data-driven solutions for spoofing
detection in different modalities based on deeper architectures than the one
used in [46] and evaluate the effects of such decision. Our objective is to show
the potential of this approach, but also highlight its limitations, especially
related to cross-dataset experiments.

11.3 Methodology

In this section, we present the CNN that we adopted to PAD for face, fin-
gerprint, and iris. Our objective is simply to show that this new trend in
the literature is also relevant for the task of PAD and that research in this
direction needs to be considered. At the same time, we also show that even
when adopting a powerful image-classification technique such as deep neural
networks, we still cannot deal effectively with the challenging cross-dataset
problem. As a result, it is clear that the research community now needs to
shift its attention to cross-dataset validation setups (or, more general, open-
set classification) because they are closer to real-world operational conditions
when deploying biometric systems.

11.3.1 Network architecture

For this work, we adopted the VGG network architecture proposed by
Simonyan and Zisserman [105]. However, that network was first proposed
for object recognition and not PAD. Therefore, for each problem of inter-
est (PAD in face, iris, and fingerprint), we adapt the network’s architecture
as well as fine-tune its weights to our two-class problem of interest. Training
the network from scratch to our problem is also a possibility if enough train-
ing samples (normal and presentation attack samples) are available. However,
because this is not often the case in this area, it is recommended to start the
network weights with a related (source) problem and then adapt these weights
with training examples of a target problem.
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FIGURE 11.2
Adopted network architecture, originally proposed for object recognition by
the Visual Geometry Group and thus referred to as VGG network [105].

Figure 11.2 depicts the network architecture we adopted in this work.
During training, the network’s input consists of fixed-size 224 × 224 RGB
images that go through a stack of convolutional layers comprising filters with
a small receptive field (3× 3). In this network, the convolution stride is fixed
to one pixel and the spatial zero-padding for convolutional operation is also of
one pixel. There are five max-pooling layers in this network (carefully placed
after some convolution layers). The max-poolings are performed over a 2× 2
pixel window, with stride 2.

The stack of convolutional layers is followed by three fully connected (FC)
layers: the first two have 4096 units each, while the the third layer performs the
two-way spoofing classification problem of our interest (originally this was an
FC layer with 1000 units for the ImageNet 1000-way classification problem).
The final layer is the soft-max layer translating the outputs of two-unit layer
into a posterior probabilities of class membership. Each unit in the hidden
layers has a rectified linear (ReLU) activation function [106]. The depth of
convolution layers or, in other words, their number of channels, starts with
64 and is iteratively doubled after each max-pooling layer to a maximum
of 512.

11.3.2 Training and testing

For training, we start with the network trained to a source problem when-
ever it is possible. To detect presentation attacks with faces, we initialize
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the network with the weights learned for face recognition [107]. However, the
closest problem we had for iris and fingerprints was general image classifi-
cation. Therefore, PAD for iris and fingerprints is performed by the network
initialized with the weights precomputed for the ImageNet classification prob-
lem. The first convolutional layers act mostly as generic feature detectors (such
as edges) and are suitable for different computer vision tasks. However, each
next convolutional layer is more context-focused and extracts features that
are task-related. Hence, using last layers trained for general object recogni-
tion in visual-spoofing detection is not optimal, and a large improvement may
be achieved by specializing the network. Certainly, a preferable solution is to
initialize the weights with those used in networks solving iris- and fingerprint-
related tasks, as the network would have been specialized to this type of
imagery. However, because training of such networks from scratch requires a
lot data and effort, it is still a good move to initialize our own network with
image-related weights than just purely at random and tune its weights if there
is not enough available training data.

Once a source set of weights to initialize the network is chosen, the fine-
tuning follows a standard procedure: selects the training set of the target
domain and uses it to perform forward passes and back-propagation in the
network. The test for an input image is straightforward. Just resize it to the
network’s input size and feed it to the network. As the network has been fully
adapted to the target problem of interest, it will already produce a two-class
output.

More specifically, for the cases of fingerprints, the input images in a data
set are center-cropped and resized to 224× 224 pixels, which is the standard
input size of the VGG network. The centering happens through calculating
the average of black pixels in the binary fingerprint image and keeping all the
rows/columns with a density of black pixels greater than the global image
average plus or minus 1.8 standard deviations of each respective row/column.
This is used to eliminate the borders without any useful information. For
optimizing the network in the fingerprint case, we use the standard SGD solver
implemented in Caffe with the following hyperparameters: base learning rate
of 0.0001, step lr policy, step size of 2000, momentum of 0.9, weight decay of
0.0002, gamma of 0.5, and maximum of 2001 iterations.

In the case of faces, we center-cropped the images based on the eye coor-
dinates calculated with the aid of Face++.∗ On center-cropping, the image
is resized to 224 × 224 pixels. For optimizing the network in the face case,
we use the standard SGD solver implemented in Caffe with the following
hyperparameters: base learning rate of 0.001, step lr policy, step size of 1000,
momentum of 0.9, weight decay of 0.0005, gamma of 0.001 and maximum
number of iterations of 4000.

∗http://www.faceplusplus.com/

http://www.faceplusplus.com/
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For irises, we resize the images to the network’s standard input size of
224× 224 pixels and employ the same parameters as for the face optimization
problem.

11.3.3 Memory footprint

The chosen network has an average size of 140 MB. Most of its parameters
(and memory) are in the convolution and FC layers. The first FC layer contains
100 million weights, out of a total of 134 million for the entire adapted network.

11.4 Metrics and Data Sets

In this section, we describe the benchmarks (data sets) and selected accuracy
estimators considered in this work. All data sets used in this chapter were
freely available to us, and we believe that it is the case for other researchers
on request sent directly to their creators. Data sets composing our testing
environment are the most commonly used benchmarks to evaluate PAD for
face, iris, and fingerprints. Because all the benchmarks have been already
divided by their creators into training and testing subsets, we decided to fol-
low these divisions. Each training subset was divided by us into two disjoint
subsets multiple times to perform cross-validation–based training to increase
generalization capabilities of the winning model and to minimize an overfit-
ting. The results reported further in this chapter are those obtained on testing
sets. The next subsections characterize briefly all data sets, and Table 11.1
shows their major features, in particular the number of samples in each bench-
mark and their assignment to training and testing subsets.

11.4.1 Video-based face-spoofing benchmarks

We use two benchmarks used to evaluate the performance of PAD algorithms
for face modality, Replay-Attack [30] and CASIA Face Anti-Spoofing [108]
data sets. These data sets contain five types of attempted attacks performed
with fake samples presenting different qualities.

11.4.1.1 Replay-attack

This benchmark contains short video recordings of both valid accesses and
video-based attacks of 50 different subjects. To generate valid access videos,
each person was recorded in two sessions in a controlled and in an adverse
environment with a regular webcam. Then, spoofing attempts were generated
using three techniques:

• Print attack : Hard copies of high-resolution digital photographs were
presented to the acquisition sensor; these samples were printed with a
Triumph-Adler DCC 2520 color laser printer.



Counteracting Presentation Attacks 261

T
A
B
L
E

1
1
.1

M
a
in

fe
a
tu
re
s
o
f
th
e
b
en
ch
m
a
rk
s
co
n
si
d
er
ed

h
er
ei
n

D
im

e
n
si
o
n

#
T
ra

in
in
g

#
T
e
st
in
g

M
o
d
a
li
ty

B
e
n
ch

m
a
rk

C
o
lo
r

c
o
ls

×
r
o
w
s

L
iv
e

F
a
k
e

T
o
ta

l
L
iv
e

F
a
k
e

T
o
ta

l

F
ac
e

R
ep
la
y
-A

tt
a
ck

Y
es

3
2
0
×
24
0

60
0

30
00

36
00

40
00

80
0

48
00

C
A
S
IA

Y
es

12
80

×
72
0

12
0

12
0

24
0

18
0

18
0

36
0

Ir
is

W
ar
sa
w

L
iv
D
et
2
0
1
5

N
o

6
4
0
×
48
0

85
2

81
5

16
67

20
02

38
90

58
92

A
V
T
S

N
o

64
0
×
48
0

20
0

20
0

40
0

60
0

60
0

12
00

F
in
g
er
p
ri
n
t

L
iv
D
et
2
0
0
9
:
C
ro
ss
M
a
tc
h

N
o

6
4
0
×
48
0

50
0

50
0

10
00

15
00

15
00

30
00

L
iv
D
et
2
0
0
9
:
Id
en
ti
x

N
o

7
2
0
×
72
0

37
5

37
5

75
0

11
25

11
25

22
50

L
iv
D
et
2
0
0
9
:
B
io
m
et
ri
ka

N
o

3
1
2
×
37
2

50
0

50
0

10
00

15
00

15
00

30
00

L
iv
D
et
2
0
1
3
:
B
io
m
et
ri
ka

N
o

3
1
2
×
37
2

10
00

10
00

20
00

10
00

10
00

20
00

L
iv
D
et
2
0
1
3
:
C
ro
ss
M
a
tc
h

N
o

8
0
0
×
75
0

12
50

10
00

22
50

12
50

10
00

22
50

L
iv
D
et
2
0
1
3
:
It
a
ld
a
ta

N
o

6
4
0
×
48
0

10
00

10
00

20
00

10
00

10
00

20
00

L
iv
D
et
2
0
1
3
:
S
w
ip
e

N
o

2
0
8
×
15
00

12
50

10
00

22
50

12
50

10
00

22
50



262 Deep Learning in Biometrics

• Mobile attack : Videos displayed on an iPhone screen were presented to the
acquisition sensor; these videos were taken also with the iPhone.

• High-definition attack : High-resolution photos and videos taken with an
iPad were presented to the acquisition sensor using the iPad screen.

11.4.1.2 CASIA

This benchmark was based on samples acquired from 50 subjects. Genuine
images were acquired by three different sensors presenting different acquisition
quality (from low to high): “long-time-used USB camera,” “newly bought USB
camera,” and Sony NEX-5. Pixel resolution of images was either 640 × 480
(both webcams) or 1920 × 1080 (Sony sensor). Sony images were cropped to
1280 × 720 by the authors. During the acquisition, subjects were asked to
blink. Three kinds of presentation attacks were carried out:

• Warped photo attack : High-quality photos were printed on a copper paper
and videos were recorded by Sony sensor; the printed images were inten-
tionally warped to imitate face micromovements.

• Cut photo attack : Eyes were cut from the paper printouts and an attacker
hidden behind an artifact imitated the blinking behavior when acquiring
the video by the Sony sensor.

• Video attack : High-quality genuine videos were displayed on an iPad screen
of 1280 × 720 pixel resolution.

The data originating from 20 subjects was selected for a training set, while
remaining samples (acquired for 30 subjects) formed the testing set.

11.4.2 Fingerprint-spoofing benchmarks

Two data sets used in Liveness Detection Competitions (LivDet, www.livdet.
org) were employed in this chapter. LivDet is a series of international com-
petitions that compare presentation attack methodologies for fingerprint and
iris using a standardized testing protocol and large quantities of spoof and live
samples. All the competitions are open to all academic and industrial insti-
tutions that have software-based or system-based biometric liveness detection
solutions. For fingerprints, we used data sets released in 2009 and 2013.

11.4.2.1 The LivDet2009 benchmark

This benchmark consists of three subsets of samples acquired by Biometrics
FX2000, CrossMatch Verifier 300 LC, and Identix DFR2100. Both the spatial
scanning resolution and pixel resolution vary across subsets, from 500 DPI to
686 DPI, and from 312 × 372 to 720 × 720 pixels, respectively. Three different
materials were used to prepare spoofs: Play-Doh, gelatin, and silicone.

http://www.livdet.org
http://www.livdet.org
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11.4.2.2 The LivDet2013 benchmark

This benchmark contains four subsets of real and fake fingerprint samples
acquired by four sensors: Biometrika FX2000, Italdata ET10, Crossmatch L
Scan Guardian, and Swipe. Inclusion of samples from the Swipe sensor is
especially interesting, because it requires, as the name suggests, swiping a
finger over the small sensor. This makes the quality of spoofs relatively dif-
ferent when compared to the regular, flat sensors requiring only touching the
sensor by the finger. For a more realistic scenario, fake samples acquired by
Biometrika and Italdata were generated without user cooperation, whereas
fake samples acquired by Crossmatch and Swipe were generated with user
cooperation. Several materials for creating the artificial fingerprints were used,
including gelatin, silicone, latex, among others. The spatial scanning resolu-
tion varies from a small 96 DPI (the Swipe sensor) to 569 (the Biometrika
sensor). The pixel resolution is also heterogeneous: from relatively nonstan-
dard 208 × 1500 to pretty large 800 × 750. This makes the cross-subset
evaluation quite challenging.

11.4.3 Iris-spoofing benchmarks

To evaluate our proposed method in detecting iris presentation attack, we
used two benchmarks: AVTS [77] and a new data set Warsaw LivDet2015,
which is an extension of Warsaw LivDet2013 [83]. These data sets contain
attempted attacks performed with printed iris images, which were produced
using different printers and paper types.

11.4.3.1 AVTS

This benchmark was based on live samples collected from 50 volunteers under
the European project BioSec (Biometrics and Security). To create spoofing
attempts, the authors tested two printers (HP Deskjet 970cxi and HP LaserJet
4200L), various paper types (e.g., cardboard as well as white, recycle, photo,
high resolution, and butter papers), and a number of preprocessing operations.
The combination that gave the highest probability of image acquisition by
the LG IrisAccess EOU3000 sensor used in the study was selected for a final
data set collection. The authors printed their samples with the inkjet printer
(HP Deskjet 970cxi) on a high-resolution paper and applied an Open-TopHat
preprocessing to each image prior to printing. The pixel resolution of each
image was 640 × 480, which is recommended by ISO/IEC as a standard
resolution for iris recognition samples.

11.4.3.2 Warsaw LivDet2015

This data set is an extension of the LivDet-Iris 2013 Warsaw Subset [83] and
was used in the 2015 edition of the LivDet-Iris competition (www.livdet.org).
It gathers 2854 images of authentic eyes and 4705 images of the paper printouts
prepared for almost 400 distinct eyes. The photographed paper printouts

http://www.livdet.org
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were used to successfully forge an example commercial iris-recognition system
(i.e., samples used in real and successful presentation attacks). Two printers
were used to generate spoofs: HP LaserJet 1320 and Lexmark C534DN. Both
real and fake images were captured by an IrisGuard AD100 biometric device
with liveness-detection functionality intentionally switched off. (To get a free
copy of this data set, follow the instructions given at Warsaw’s lab webpage
http://zbum.ia.pw.edu.pl/EN/node/46).

11.4.4 Error metrics

In this chapter, we use the error metrics that are specific to PAD and partially
considered by ISO/IEC in their PAD-related standards [110].

Attack presentation classification error rate (APCER): Proportion of attack
presentations incorrectly classified as bona-fide (genuine) presentations at the
PAD subsystem in a specific scenario. This error metric is analogous to false
match rate (FMR) in biometric matching, that is related to a false match
of samples belonging to two different subjects. As FMR, the APCER is a
function of a decision threshold τ .

Bona-fide presentation classification error rate (BPCER): Proportion of bona-
fide (genuine) presentations incorrectly classified as presentation attacks at
the PAD subsystem in a specific scenario. This error metric is analogous to
false nonmatch rate (FNMR) in biometric matching, that is related to false
nonmatch of samples belonging to the same subject. Again, the BPCER is a
function of a decision threshold τ .

Half total error rate (HTER): Combination of APCER and BPCER in a single
error rate with a decision threshold as an argument:

HTER(τ) =
APCER(τ) + BPCER(τ)

2
(11.1)

11.5 Results

In this section, we present and discuss the experimental results of the proposed
method. Sections 11.5.1 through 11.5.3 show the performance results and the
experimental protocols employed to validate the performance of the proposed
methodology.

11.5.1 Face

In this section, we present the results of our proposed PAD for face modality.
The experiments are conducted considering the original protocol of the data

http://zbum.ia.pw.edu.pl/EN/node/46
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sets used in this chapter (cf., Section 11.4), as well cross-dataset protocol,
hereafter referred to as same-dataset and cross-dataset protocols, respectively.
In general, a prime requirement of most machine-learning algorithms is that
both training and testing sets are independent and identically distributed.
But unfortunately, it does not always happen in practice; subsets can be
identically distributed (e.g., captured using the same sensor and in the same
environment conditions), but totally dependent because of adding of bias
in the data (e.g., some dirt in the biometric sensor used to capture both
subsets, identities present in two subsets, artifacts added during the attack
simulations, etc.). In addition, the effects of the closed-world assumption [64]
may mislead us to believe that a given approach is perfect when in fact
its performance can be disastrous when deployed in practice for unknown
presentation attacks. In this context, both same-dataset and cross-dataset
are key experimental protocols in determining more accurate detection rates
of an antispoofing system when operating in less-controlled scenarios with
different kinds of attacks and sensors.

11.5.1.1 Same-dataset results

Table 11.2 shows the results for Replay-Attack and CASIA data sets, con-
sidering that training and testing is performed on the same data set. The
VGG network was able to detect all kinds of attempted attacks present in the
Replay-Attack data set, and also to detect two methods of attempted attacks
(hand-based and fixed-support attacks), which were confirmed by the perfect
classification result (HTER of 0.0%). Considering the CASIA data set, the
proposed method obtained an HTER of 6.67%. The performance achieved by
the proposed method on this data set can be explained by the high degree
of variability present in the CASIA data set (e.g., different kinds of attack
and resolution) that makes this data set more challenging. In both data sets,
we use the k-fold cross-validation technique (k = 10) to build a classifica-
tion model using the training set and also the development set whether it is
available. Figures 11.3 and 11.4 present empirical distributions of the differ-
ence between two CNN output nodes and the corresponding ROC curves.

TABLE 11.2
Performance results obtained in the same-dataset evaluations of the
face PAD

APCER BPCER HTER

(%) (%) (%) ROC and ePDF

Replay-Attack 0.00 0.00 0.00 Figure 11.3
CASIA 0.00 13.33 6.67 Figure 11.4

Note: Pointers to plots presenting receiver operating characteristics (ROC) and em-
pirical probability distribution functions (ePDF) are added in the last column.
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TABLE 11.3
Performance results obtained with the cross-dataset evaluations of face
PAD and using the overall testing set of each data set

APCER BPCER HTER ROC
Training Test (%) (%) (%) and ePDF

Replay-Attack CASIA 42.67 51.67 47.16 Figure 11.5
CASIA Replay-Attack 89.44 10.0 49.72 Figure 11.6

11.5.1.2 Cross-dataset results

Table 11.3 and Figures 11.5 and 11.6 show the results obtained in cross-dataset
evaluation protocol. We can clearly see a dramatic drop in the performance
when we train and test on different data sets. Several sources of variability
between the data sets may contribute to this result. The first one is that the
data sets contain different kinds of attack. The Replay-Attack data set con-
tains three kinds of attacks (high definition-based, mobile-based, and video-
based attacks), whereas the CASIA data set includes an additional two kinds
of attack (warp-based and cut-based photo attacks). Another source is the
fact that data come from different sensors, which potentially produce samples
with different resolutions, color distributions, backgrounds, and so on. The
VGG architecture finds specific features and even when it is tuned to the spe-
cific problem, it does not generalize well to be agnostic to specific properties
of data acquisition process.

11.5.2 Fingerprints

This section presents how our VGG-based approaches perform in detection of
fingerprint attack presentation. As for experiments with face benchmarks, we
used the training subsets (as defined by data set creators) to make a cross-
validation–based training and separate testing subsets in final performance
evaluation. Fingerprint benchmarks are composed of subsets gathering mixed
attacks (e.g., glue, silicone, or gelatin artifacts) and acquired by different sen-
sors (Table 11.1).

11.5.2.1 Same-sensor results

In this scenario, samples acquired by different sensors are not mixed together.
That is, if the classifier is trained with samples acquired by sensor X, only
sensor X samples are used in both the validation and final testing. As in
previous experiments, 10 statistically independent estimation-validation pairs
of nonoverlapping subsets were created, and the solution presenting the low-
est HTER over 10 validations was selected for testing. Table 11.4 as well as
Figures 11.7 and 11.8 show the same-sensor testing results averaged over all
sensors (used to build a given data set) and presented for each benchmark
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TABLE 11.4
Performance results obtained in same-dataset evaluations of
fingerprint PAD using a part of testing samples acquired by the same
sensor as in the training procedure

APCER BPCER HTER ROC

Training Testing (%) (%) (%) and ePDF

LivDet2009 LivDet2009 19.37 3.45 11.4 Figure 11.7
LivDet2013 LivDet2013 6.8 2.79 4.795 Figure 11.8

Notes: Results are averaged over all subsets representing different sensors.

separately. These results suggest that the older benchmark (LivDet2009) is rel-
atively difficult because almost 20% of spoofing samples were falsely accepted
in a solution that falsely rejects only 3.45% of authentic examples.

11.5.2.2 Cross-sensor results

For cross-sensor analysis, the newer benchmark (LivDet2013) was selected.
Each subset (estimation, validation, and testing) was divided into two disjoint
subsets of samples: acquired by ItalData and Swipe sensors and acquired by
Biometrika and CrossMatch sensors. Table 11.5 shows that, as with the other
modalities, we can observe serious problems with recognition of both artifacts
or genuine samples (two first rows of Table 11.5). Figures 11.9 and 11.10,
illustrating these results, suggest that a better balance between APCER
and BPCER can be found if there is a possibility to adjust the acceptance
threshold.

For completeness, same-sensor results are also presented on this data set
in two last rows of Table 11.5 and in Figures 11.11 and 11.12. As expected, a
solution based on deep network achieves much better accuracy when the type
of sensor in known.

11.5.3 Iris

This last section presents the results of iris presentation attacks detection.
Two iris PAD benchmarks were used (as described in Section 11.4), and both
same-dataset and cross-dataset experiments were carried out. Each data set
(Warsaw LivDet2015 and AVTS) is already split by their creators into train-
ing and testing subsets. We followed this split and used the testing subset only
in final performance evaluation. The training subset, used in method develop-
ment, was randomly divided 10 times into estimation and validation disjoint
subsets used in cross-validation when training the classifiers.

The average HTER’s over 10 splits calculated for validation subsets were
approx. 0.0001 and 0.0 for Warsaw and AVTS data sets, respectively. HTER =
0.0 for 5 out of 10 splits of Warsaw training data set. This means that the
VGG-based feature extractor followed by a classification layer trained on our
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TABLE 11.5
Performance results obtained in cross-dataset evaluations of
fingerprint PAD using a part of testing samples acquired by
different sensor as in the training procedure

APCER BPCER HTER ROC

Training Testing (%) (%) (%) and ePDF

IS BC 24.9 4.01 14.1 Figure 11.9
BC IS 2.8 75.6 39.18 Figure 11.10
IS IS 3.4 2.37 2.88 Figure 11.11
BC BC 2.65 13.1 7.87 Figure 11.12

Note: All data comes for LivDet2013 fingerprint benchmark. BC, Biometrika+
CrossMatch; IS, Italdata+Swipe.

data was perfect on the AVTS data set, and also it was perfect on half of the
splits of the Warsaw benchmark. Because there is no “best split” for either of
two data sets, we picked one trained solution presenting perfect performance
on the training subsets to evaluate them on the test sets.

11.5.3.1 Same-dataset results

Table 11.6 presents the testing results obtained in the scenario when both
training and testing sets come from the same benchmark. APCER and
BPCER refer to classification task, that is each sample belonging to the test-
ing set was classified to one of two classes (authentic or presentation attack)
based on posteriori probabilities of class membership estimated by the softmax
layer of the trained network. Hence, single APCER and BPCER (point estima-
tors) are presented because this protocol is equivalent to a single acceptance
threshold. The results obtained in this scenario are astonishing: the classifiers
trained on disjoint subsets of samples originating from the same data set are
either perfect (ATVS benchmark) or close to perfect (a perfect recognition of
spoofing samples of Warsaw benchmark with only 0.15% of authentic samples
falsely rejected). Figures 11.13 and 11.14 present empirical distributions of
the difference between two CNN output nodes and the corresponding ROC
curves. The distributions are well separated for both benchmarks, suggest-
ing high performance of the VGG-based solution applied for known spoofing
samples.

11.5.3.2 Cross-dataset results

Table 11.7 shows how catastrophically bad this method may be if tested
on cross-dataset samples. ATVS and Warsaw samples differ significantly
in terms of image properties such as contrast and visibility of iris texture.
Especially, all the printouts used to produce Warsaw fake samples were able
to spoof an example commercial iris-recognition system, which is not the case
in the ATVS benchmark. Hence, because of nonaccidental quality of Warsaw
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FIGURE 11.12
Same as Figure 11.7 except the variant: training on Biometrika+
CrossMatch.

TABLE 11.6
Performance results obtained in same-dataset evaluations of iris
PAD using the overall testing set of each data set

APCER BPCER HTER ROC

Training Testing (%) (%) (%) and ePDF

Warsaw Warsaw 0.0 0.15 0.075 Figure 11.13
ATVS ATVS 0.0 0.0 0.0 Figure 11.14
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FIGURE 11.13
(a) Empirical distributions of the difference between two CNN output nodes
(before softmax) obtained separately for authentic and spoof iris samples.
(b) ROC curve. Variant: training on Warsaw LivDet2015, testing on
Warsaw LivDet2015. The threshold shown in blue color on the left plot
and the blue dot on the ROC plot correspond to the approach when the
predicted label is determined by the node with the larger output.
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FIGURE 11.14
Same as Figure 11.13 except the variant: training on ATVS, testing on
ATVS.

samples, this database seems to be more realistic and more difficult to process
than the ATVS. Indeed, training on Warsaw (the “difficult” benchmark) and
testing on ATVS (the “easier” benchmark) yields good results. Figure 11.15
presents well-separated empirical distributions of the difference between the
output nodes of the network obtained for authentic samples and spoofs.
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TABLE 11.7
Performance results obtained in cross-dataset evaluations of iris PAD
using the overall testing set of each data set

APCER BPCER HTER ROC

Training Testing (%) (%) (%) and ePDF

Warsaw ATVS 0.0 0.625 0.312 Figure 11.15
ATVS Warsaw 99.9 0.0 49.99 Figure 11.16
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FIGURE 11.15
Same as Figure 11.13 except the variant: training on Warsaw LivDet2015,
testing on ATVS.
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However, training on ATVS and testing on Warsaw yields almost null abil-
ities to detect spoofs (APCER = 99.9%). This may suggest that exchanging
a single layer put on top of the VGG-based feature extraction (trained for
a different problem than spoofing detection) is not enough to model vari-
ous qualities of iris printouts prepared independently by different teams and
using different acquisition hardware. Figure 11.16 confirms that almost all
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FIGURE 11.16
Same as Figure 11.13 except the variant: training on ATVS, testing on
Warsaw LivDet2015.
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scores obtained for spoofing samples are on the same side of the threshold as
for authentic samples. Certainly, if the threshold can be adapted (which is not
typically done in the tests), one can find other proportion between APCER
and BPCER, for instance a threshold shifted from 0 to −21.9 results in the
EER 13.2%.

11.6 Conclusions

In this chapter, we proposed a PAD solution for three modalities widely em-
ployed for designing biometric systems (i.e., face, iris, and fingerprint) based
on VGG network architecture, a deep network architecture originally proposed
for object recognition. We showed a methodology to adapt the VGG network
to the two-class spoofing classification problem, which was evaluated using six
benchmarks available for scientific purposes. The experiments were conducted
taking into account the main challenges existing in this research field such as
classification across different types of attempted attacks, biometric sensors,
and qualities of samples used during attack. In this section, we discuss two
main takeaways observed after the analysis presented in this chapter.

The first conclusion is that deep learning is an astonishingly powerful
approach to detect image-based presentation attacks in three considered
modalities. Note that the final solution is a subtle modification of the VGG
network, trained for a different task, not related to PAD. In the case of
iris and fingerprints, the starting network is not even related to the same
object-recognition task. The results showed that we can use deep learning to
detect spoofing attacks in some cases (AVTS iris benchmark) even perfectly.
In this simple approach, we have changed only the last layer, connected
strictly to the classification task performed by the VGG network. However,
one can consider replacing two or all FC layers and use the output of the
convolutional part of the network more efficiently.

The second takeaway comes from the cross-dataset and cross-sensor exper-
iments. These exceptionally poor results seem to be related to the flexibility
that characterizes convolutional networks. The flexibility allows them to
“decide” which discovered properties of the input data they use in the classifi-
cation task. But if they are not trained on data that contain a reasonable sam-
pling of the situations present during testing, then they fail terribly because
most of the features no longer correspond to the new data.

This, however, is not a surprising result and simply calls for solutions
that take prior knowledge about the modeled phenomenon into account.
Apparently the current fascination with deep learning has brought back an
old debate: should we use models that are based on our understanding of
the problem, which is neither full nor accurate (called feature engineering or
hand-crafted solutions) or rather flexible models that learn everything from
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the data (called feature learning or data-driven solutions)? It seems that a
reasonable mixture of both approaches should present the best reliability. We
firmly believe the solution to this problem is in taking the best of both worlds.
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26. J. Määttä, A. Hadid, and M. Pietikäinen. Face spoofing detection from
single images using texture and local shape analysis. IET Biometrics,
1(1):3–10, 2012.

27. T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale
and rotation invariant texture classification with local binary pat-
terns. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 24(7):971–987, 2002.

28. J. G. Daugman. Uncertainty relation for resolution in space, spatial fre-
quency, and orientation optimized by two-dimensional visual cortical fil-
ters. Journal of the Optical Society of America, 2(7):1160–1169, 1985.

29. N. Dalal and B. Triggs. Histograms of oriented gradients for human de-
tection. In IEEE International Conference on Computer Vision and Pat-
tern Recognition (CVPR), Vol. 1, pp. 886–893, June 2005.

30. I. Chingovska, A. Anjos, and S. Marcel. On the effectiveness of local
binary patterns in face anti-spoofing. In International Conference of the
Biometrics Special Interest Group (BIOSIG), pp. 1–7, September 2012.

31. N. Erdogmus and S. Marcel. Spoofing 2D face recognition systems with
3D masks. In International Conference of the Biometrics Special Interest
Group (BIOSIG), pp. 1–8, 2013.



Counteracting Presentation Attacks 287

32. T. S. Lee. Image representation using 2d gabor wavelets. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
18(10):959–971, 1996.

33. M. Günther, D. Haufe, and R. Würtz. Face recognition with disparity
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M. Pietikäinen, and S. Marcel. Face liveness detection using dynamic
texture. EURASIP Journal on Image and Video Processing (JIVP),
2014(1):2, 2014.

36. D. Garcia and R. de Queiroz. Face-spoofing 2D-detection based on moiré-
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12.1 Introduction

The ease of authenticating any subject without requiring them to carry special
kinds of tokens or additional devices has resulted in the wide use of biometrics.
Along with the advantage of not carrying a token device, biometrics also offers
a high level of security. Further, various biometric characteristics ranging from
face, iris, fingerprint, and fingervein provide a differing security level. Based on
the high level of security provided by fingervein recognition, many commercial
applications such as banks in many parts of Asia have employed fingervein

295



296 Deep Learning in Biometrics

as the primary authentication mode for interacting with automated teller
machines (ATMs) [1]. Fingervein is difficult to spoof through the creation of
artifacts because the vein pattern is beneath the dermal layer and masked by
tissues making it less vulnerable to attacks such as lifted fingerprint attacks.

Thus, it is challenging to collect a fingervein sample without cooperation
of the enrolled data subject. Although the creation of fingervein artifacts is
difficult, limited works in this direction have shown that fingervein-capture
devices themselves can be easily attacked with some engineering efforts such
as presentation of printed fingervein samples with various quality, presenting
the fingervein samples using smartphones, or by using additional illumination
to outcast the sensor illumination source such that the artifact is captured as
a real sample [2]. Such kinds of attacks at the sensor level through the aid
of artifacts are popularly called presentation attacks (or spoofing attacks) [2].
A previous work in this direction demonstrated the vulnerability of fingervein-
capture devices toward presentation attack by a simple mechanism of printed
fingervein sample using a conventional laser printer [3]. Figure 12.1 shows the
example of the fingervein bona fide and the artifact samples that indicates the
similar visual quality to that of bona-fide image.

In their work, a detailed analysis of vulnerability was presented using
100 unique fingervein images captured from 50 different subjects which indi-
cated an Impostor Attack Presentation Match Rate (IAPMR) or Spoof False
Acceptance Rate (SFAR) of 86%. An alternative to such image-capture–based
fingervein systems can be video-capture–based systems. Another work studied
fingervein systems operating with video-based acquisition, and it was demon-
strated that even those systems are vulnerable to attacks [2]. Specifically, a
detailed analysis of vulnerability was carried on a relatively large fingervein
database of 300 unique fingervein videos [2]. In that study, each unique fin-
gervein biometric instance was captured twice with 25 frames of video and
one of them was used to generate different kinds of artifacts such as printed
samples using both laserjet and inkjet printers. The analysis indicated the vul-
nerability of video-based systems, which resulted in an IAPMR of 90.62% for
the inkjet printed artifact species and 91.87% for the laserjet printed artifact
species [2]. A recent work also analyzed the vulnerability toward electronically
presented artifacts through smartphone display, which indicated an IAPMR
of 100%.

To address these flaws toward presentation attacks on fingervein sen-
sors, a number of presentation attack detection (PAD) schemes have been

Bona fide Inkjet artifact Laserjet artifact

FIGURE 12.1
Example of fingervein artifact samples.
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proposed that range from exploring quality-based features and texture features
to motion features. A fingervein PAD algorithm based on spatial-frequency
and time-frequency analysis using Fourier and Wavelet transform was pro-
posed in Nguyen et al. [4]. Preliminary experiments were carried out on a
small database of seven subjects that indicated the applicability of frequency
information to detect fingervein artifacts. Along similar lines, a number of
approaches were provided in the first competition on fingervein PAD [5]. The
techniques submitted to this competition were evaluated on the publicly avail-
able fingervein artifact database collected from 50 subjects [3]. Four different
texture-based approaches were explored by learning a support vector machine
(SVM) to classify the artifacts against the normal or bona-fide presentations.
The evaluation of approaches such as binarized statistical image features,
Riesz transform, local binary pattern, extensions of local binary patterns, and
local phase quantization iterated the employability of texture-based features
[3,6]. Following the paradigm of texture-based approaches, Steerable Pyramids
were explored for detecting the fingervein presentation attacks [7]. Steerable
Pyramids were shown to detect three different species of presentation attacks
instruments (PAIs) that included printed and electronic screen attacks.

Another work in this direction employed the motion characteristics in vein
pattern by collecting the video of fingerveins [2]. The flow of blood in the
fingervein was magnified and analyzed with a simple decision module to dis-
tinguish the real presentations against artifact presentations. The evaluation
of the blood-flow–based method indicated superiority in detecting artifacts on
a video database of 300 unique fingervein samples [2]. A key outcome of this
work indicated generalizability to unseen attacks on fingervein biometric sys-
tems unlike most of the texture-based approaches, which fail to detect unseen
attacks [2]. It has to be noted that robustness of biometric systems is largely
based on good performance while addressing any unknown attacks.

Recent advances in machine learning have resulted in more sophisticated
algorithms based on convolutional neural networks (CNNs) that have demon-
strated an excellent classification accuracy on various applications [8]. The
effectiveness of CNNs strongly depends on the availability of the large-scale
training data with significant variability. However, by employing the analogy
of transfer learning that involves using the existing fully trained networks
and then fine-tuning the network to adapt to the precise application is also
explored in the machine-learning domain. The transferable CNNs can be fine-
tuned using a small set of data that can be made applicable for the appli-
cations that lack the large-scale data sets. Thus, it is reasonable to explore
the transfer learning approach using CNNs for the precise application of fin-
gervein PAD (or spoof detection). In Raghavendra et al. [9], the transferable
features from AlexNet were explored to detect the presentation attacks on
the fingervein biometric system. To this extent, we have explored AlexNet [8],
which is further augmented with five additional layers with consecutive fully
connected and dropout layers to lower the over-fitting of network. Note that
AlexNet was originally trained with 15 million labeled high-resolution images
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belonging to roughly 22,000 categories. The images were collected from the
web and were as such not similar in their properties to fingervein samples.
Finally, the classification is carried out using the softmax classifier to detect
the presentation attack on the fingervein samples.

In this chapter, we further extend our study on the transferable features
from deep CNNs by exploring the decision-level fusion. To this extent, we
explore the majority voting for combining the decision from the individual
classifiers. We follow the similar fine-tuning steps as indicated in Raghavendra
et al. [9] to obtain the fully connected features. We then propose to use three
different classifiers such as: softmax, linear discriminant analysis (LDA), and
SVM in which the decision from individual classifiers are combined using
majority voting. Extensive experiments are carried out using two different
databases comprised of 300 unique fingervein samples from the fingervein
video presentation attack database [2] and fingervein image PAD database [7].
We also present a comparative performance of the proposed approach with six
different existing methods on the fingervein video database and 12 different
existing methods on the fingervein image database.

The rest of the chapter is organized as follows: Section 12.2 presents
the transferable features based on deep-CNN features for fingervein PAD,
and Section 12.3 presents the experimental results and discussion. Finally,
Section 12.4 draws the summary of this work.

12.2 Transferable Features for Fingervein PAD

Figure 12.2 shows the block diagram of our proposed scheme based on the
transferable features using deep CNN for finger PAD. The proposed scheme
employs the well-known, pretrained AlexNet [8] and then extends it further
with five continuous layers with fully connected layers and dropout layers.
The main motivation for these additional layers, especially, the dropout

Fingervein
patches

FC
(4096)

FC
(4096)

FC
(512)

LDA

SVM

AlexNet Dropout
0.5

Dropout
0.5

softmax

Feature
extraction

Majority
voting

Artifact
Bona fide

Fingervein
video

frames

FIGURE 12.2
Block diagram of our fingervein PAD scheme based on transferable deep-CNN
features.
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layers- is that they are expected to reduce the over-fitting of the network
and thus can learn a robust feature set to detect the fingervein presentation
attack prominently. We then extract the features from the last fully connected
layer of dimension 1×512 and use that vector to perform the classification. We
have explored three different classifiers such as softmax, LDA, and the SVM
classifier that are trained independently on the deep-CNN features. Given the
frame from the probe video, the classification is carried out using all three
classifiers, and the final decision is made by considering the majority voting.

The crucial part of the proposed method is fine-tuning the network, mainly
to control the learning rates of the newly added layers. We follow the conven-
tional method on adjusting the learning rate that will modify the learning
rate quickly and learn the weights of the newer layers. Thus, we have used the
weight learning rate factor as 10 and bias learning rate factor as 20. We employ
the fingervein video PAD database [2] to fine-tune the network. We have used
the training set comprised of 50 unique fingervein instances of bona-fide sam-
ples, laser artifact samples, and inkjet artifact samples. For each subject, two
bona-fide videos are recorded at a rate of 15 frames/second for the duration
of 3 seconds in two different sessions. Thus, each video has 45 frames that will
result in a total of 50 unique fingervein instances × 2 sessions × 1 videos =
100 videos, which equals 100 × 45 = 4500 frames. Each frame is of the
dimension 300 × 100 pixels. To effectively fine-tune the deep-CNN architec-
ture, we carried out the data augmentation by dividing each frame into 100
nonoverlapping image patches of size 64× 64 pixels. This will result in a total
of 4500 frames × 100 = 450, 000 bona-fide image patches used for fine-tuning
the network. Because the same number of the artifact (or spoof) samples are
available for both laser and inkjet print artifact, we have used 450,000 laser
and inkjet print artifact image patches to pretrain the network separately.

We train two independent models separately for two different kinds of
artifact species such that Model-1 : is trained using only laser print artifacts
and the bona-fide fingervein samples. Model-2 : is trained using only inkjet
print artifact and the bona-fide fingervein samples. Because the proposed
approach is based on developing a classification scheme using deep-CNN fea-
tures, we extract the features from the last fully connected layer and train
three different classifiers corresponding to Model-1 and Model-2. Given the
fingervein probe video, we first decompose it to get 45 frames. Then each fin-
gervein sample is first divided into 100 different image patches of size 64× 64
pixels. The classification of the fingervein video as either bona fide or artifact
is carried out in two steps: (1) For each of the image patches, we first obtain
the classification results for all three classifiers. Then, majority voting on the
classifier decision is computed to label the given patch as either artifact or
bona fide. This step is repeated for all 100 image patches to obtain the label
for each patch. (2) The majority voting of the decision made on each patch
is employed to make the final decision on the given fingervein as bona fide or
artifact.
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12.3 Experiments and Results

In this section, we discuss the experimental results of the proposed method on
two different fingervein artifact databases namely; fingervein video presenta-
tion attack database [2] and fingervein image presentation attack database [7].
These two databases are captured using the same fingervein sensor, but the
resolution of the captured data differs significantly from the video-based
database to the image-based database. In the following section, we present
the brief information on both of these databases employed in this work.

12.3.1 Fingervein video presentation attack database
(Database-1)

This database is collected using the custom fingervein sensor available in
Raghavendra et al. [10] and comprised of the video recording of 300 unique
fingervein instances with two different artifact species such as laser print
artifact and inkjet print artifact. We have used the same protocol described
in Raghavendra et al. [2] with 50 unique fingervein instances with two videos
each for training and 250 unique fingervein instances with two videos each for
testing.

12.3.2 Fingervein image presentation attack database
(Database-2)

This database is also collected using the custom sensor, which is the same as
the one used with the Database-1. This database is comprised of 300 unique
fingervein image instances. Each unique instance has two bona-fide captures;
one artifact sample generated using the laser printer, one artifact sample cre-
ated using the inkjet printer, and one artifact sample made using a display
attack. In this work, we have used this database only to test the performance
of the proposed scheme, which is trained only on the Database-1. In this
work; we choose only two artifact species corresponding to laser and inkjet
print method. Figure 12.3 shows the example of the sample images from the
database.

12.3.3 Performance evaluation protocol and metrics

The pretraining of the proposed network is carried out using the training set of
the Database-1. The testing set from both Database-1 and Database-2 is used
to report the results to benchmark the performance of the proposed scheme
with existing techniques.

The quantitative performance of the PAD algorithms are presented
according to the metric developed in ISO/IEC 30107-3 [11] in terms of: (1)
Attack Presentation Classification Error Rate (APCER), which is defined as
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Bona fide Inkjet artifact species Laserjet artifact species

FIGURE 12.3
Example images from fingervein image presentation attack database
(Database-2) corresponding to two subjects [7].

a proportion of attack presentation incorrectly classified as bona-fide (or real)
presentation; (2) Bona-fide Presentation Classification Error Rate (BPCER),
which is defined as a proportion of bona-fide presentation incorrectly classified
as attack presentation.

12.3.4 Results on fingervein video presentation attack
database (Database-1)

Tables 12.1 and 12.2 indicate the performance of the proposed scheme on the
fingervein video presentation attack database (Database-1) [2]. The perfor-
mance of the proposed method is benchmarked against five different state-
of-the-art fingervein PAD schemes that are evaluated using the proposed
scheme. Table 12.1 shows the performance of the proposed scheme for the
inkjet artifact species that has demonstrated the best performance and the
proposed method has indicated the best performance with the APCER of
1.82% and BPCER of 0%.

Table 12.2 shows the performance of the proposed scheme on the inkjet
print artifact species. Here as well, it can be observed that the proposed system

TABLE 12.1
Performance of the proposed scheme on inkjet printed
artifact species

Method APCER (%) BPCER (%)

Riesz transform-SVMa [5] 9.20 84.40
LPQ+WLD-SVMa [5] 22.80 0.40
LBP-SVMa [5] 34.40 2.40
M-BSIF-SVMa [5] 20.00 5.60
Liveness Measure [2] 2.40 2.00
Transferable D-CNN [9] 3.48 0
Proposed scheme 1.82 0

aReimplemented in MATLAB�
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TABLE 12.2
Performance of the proposed scheme on laserjet printed
artifact species

Method APCER (%) BPCER (%)

Riesz transform-SVMa [5] 7.20 79.60
LPQ+WLD-SVMa [5] 13.20 1.60
LBP-SVMa [5] 10.00 6.00
M-BSIF-SVMa [5] 8.00 14.00
Liveness Measure [2] 5.20 2.00
Transferable D-CNN [9] 0 0
Proposed scheme 0 0

aReimplemented in MATLAB

has demonstrated an outstanding performance with APCER and BPCER of
0%. Analyzing the obtained results, the proposed method has emerged as
the best performing scheme on both laser and inkjet artifact species on the
fingervein video presentation attack database.

12.3.5 Results on fingervein image presentation attack
database (Database-2)

This section presents the results of the proposed scheme on the fingervein
image presentation attack database [7]. Figure 12.3 shows the example of the
bona-fide and artifact samples from the fingervein image presentation attack
database [7]. Table 12.3 shows the quantitative results of the proposed method
on inkjet printed artifact species and a benchmark with 11 different state-of-
the-art schemes. Based on the obtained results, the proposed method has
indicated best results with the lowest APCER of 1.2% and BPCER of 0%.
The obtained results have shown robustness of the proposed approach when
compared to 11 different state-of-the-art fingervein PAD algorithm.

Table 12.4 indicates the quantitative results of the proposed scheme on the
laserjet artifact species. The performance of the proposed scheme is compared
with 11 different state-of-the-art systems evaluated on the same database fol-
lowing the same protocol. The obtained results with the proposed method
have shown the best performance with lowest error rates of APCER = 0%
and BPCER = 0%.

Based on the obtained performance of the proposed scheme on two different
fingervein presentation attack databases, it can be noted that:

• The proposed method has indicated the best performance on both laser
and inkjet print artifact species from both fingervein presentation attack
databases.

• The proposed method has consistently shown a BPCER of 0% on both
artifact species from both fingervein presentation attack databases.
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TABLE 12.3
Performance results for the proposed PAD algorithm on the inkjet printed
artifact species

Type Techniques APCER BPCER

Texture-based
schemes

Ensemble of BSIF - SVM 13.2 8.4

GLCM - SVM 5.6 40
LBPu2

(3X3) - SVM 22.4 6

LPQ - SVM 7.6 6
LBP Variance - SVM 21.6 36.4
Steerable Pyramids - SVM 4.4 2.8

Frequency-based
techniques

2D FFT - SVM 47.2 9.6
2D Cepstrum - SVM 9.6 43.2

Quality-based
techniques

Local Entropy Map - SVM 12.4 7.6

Block-wise Sharpness - SVM 10.8 19.2
Block-wise standard
deviation - SVM

13.2 9.6

Transferable
Deep-CNN [9]

Deep-CNN with softmax 3.2 0

Proposed
method

Deep-CNN with classifier
fusion

1.2 0

TABLE 12.4
Performance results for the proposed PAD algorithm on the laserjet
artifact species

Type Techniques APCER BPCER

Texture-based
schemes

Ensemble of BSIF - SVM 15.6 11.2

GLCM - SVM 18.4 36
LBPu2

(3X3) - SVM 1.2 20.8

LPQ - SVM 0.4 20.4
LBP Variance - SVM 14 47.2
Steerable Pyramids - SVM 0.4 5.66

Frequency-based
techniques

2D FFT - SVM 14 82

2D Cepstrum - SVM 3.6 27.6
Quality-based
techniques

Local Entropy Map SVM 6.8 52

Block-wise Sharpness - SVM 3.2 41.2
Block-wise standard
deviation - SVM

4.4 42.8

Transferable
Deep-CNN [9]

Deep-CNN with softmax 0.4 0

Proposed
method

Deep-CNN with
classifier fusion

0 0
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12.4 Discussion and Summary

The evolution of Deep CNNs and the ability to adopt a pretrained net-
work to other applications has indicated their applicability to several real-life
applications. In this chapter, we have explored transferable features from the
pretrained deep CNN (AlexNet) and trained this network to adapt to our pre-
cise problem of fingervein PAD. To facilitate the learning of robust features by
reducing the over-fitting of the network, we augmented the pretrained network
with five additional layers that are arranged with consecutive fully connected
and dropout layers. We then use the final fully connected layer to obtain a
feature vector and train three different classifiers with softmax, LDA, and the
SVM classifier. Given the probe video/image of the fingervein, the final deci-
sion is made by combing the decisions from all three classifiers using majority
voting. Extensive evaluation of the proposed scheme is carried out using two
different databases such as the fingervein video presentation attack database
(Database 1) and fingervein image presentation attack database (Database 2).
The quantitative results obtained using the proposed method has indicated the
best performance on both fingervein video presentation attack database when
compared with five different state-of-the-art schemes and fingervein image pre-
sentation attack database when compared with 11 different state-of-the-art
systems. The obtained results have clearly shown the superiority of the pro-
posed scheme for fingervein PAD. The future work involves in exploring the
proposed scheme for unseen attacks and cross database evaluation.

12.4.1 Future research avenues

It is well demonstrated that the use of the transferable features from the pre-
learned deep-CNN networks are robust to detect the presentation attacks on
the fingervein sensor. The future work should focus on both generating a pre-
sentation attack and also on detecting the same. New kinds of presentation
attack instruments need to be developed that can simulate the artificial blood
flow that can be used to bypass the liveness measure techniques. It is well
known that the use of the learning-based schemes can show the better per-
formance, but lacks generalizability when it comes to the unseen fingervein
artifacts. Thus, it is necessary to develop newer PAD schemes that can be
generalized on the unseen PAI.
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